Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virus Evol ; 10(1): veae036, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38808036

RESUMO

Amino acid preferences at a protein site depend on the role of this site in protein function and structure as well as on external constraints. All these factors can change in the course of evolution, making amino acid propensities of a site time-dependent. When viral subtypes divergently evolve in different host subpopulations, such changes may depend on genetic, medical, and sociocultural differences between these subpopulations. Here, using our previously developed phylogenetic approach, we describe sixty-nine amino acid sites of the Gag protein of human immunodeficiency virus type 1 (HIV-1) where amino acids have different impact on viral fitness in six major subtypes of the type M. These changes in preferences trigger adaptive evolution; indeed, 32 (46 per cent) of these sites experienced strong positive selection at least in one of the subtypes. At some of the sites, changes in amino acid preferences may be associated with differences in immune escape between subtypes. The prevalence of an amino acid in a protein site within a subtype is only a poor predictor for whether this amino acid is preferred in this subtype according to the phylogenetic analysis. Therefore, attempts to identify the factors of viral evolution from comparative genomics data should integrate across multiple sources of information.

2.
Eur J Hum Genet ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658779

RESUMO

Constitutional heterozygous pathogenic variants in the exonuclease domain of POLE and POLD1, which affect the proofreading activity of the corresponding polymerases, cause a cancer predisposition syndrome characterized by increased risk of gastrointestinal polyposis, colorectal cancer, endometrial cancer and other tumor types. The generally accepted explanation for the connection between the disruption of the proofreading activity of polymerases epsilon and delta and cancer development is through an increase in the somatic mutation rate. Here we studied an extended family with multiple members heterozygous for the pathogenic POLD1 variant c.1421T>C p.(Leu474Pro), which segregates with the polyposis and cancer phenotypes. Through the analysis of mutational patterns of patient-derived fibroblasts colonies and de novo mutations obtained by parent-offspring comparisons, we concluded that heterozygous POLD1 L474P just subtly increases the somatic and germline mutation burden. In contrast, tumors developed in individuals with a heterozygous mutation in the exonuclease domain of POLD1, including L474P, have an extremely high mutation rate (>100 mut/Mb) associated with signature SBS10d. We solved this contradiction through the observation that tumorigenesis involves somatic inactivation of the wildtype POLD1 allele. These results imply that exonuclease deficiency of polymerase delta has a recessive effect on mutation rate.

3.
Genome Biol Evol ; 16(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38401265

RESUMO

While mutational processes operating in the Escherichia coli genome have been revealed by multiple laboratory experiments, the contribution of these processes to accumulation of bacterial polymorphism and evolution in natural environments is unknown. To address this question, we reconstruct signatures of distinct mutational processes from experimental data on E. coli hypermutators, and ask how these processes contribute to differences between naturally occurring E. coli strains. We show that both mutations accumulated in the course of evolution of wild-type strains in nature and in the lab-grown nonmutator laboratory strains are explained predominantly by the low fidelity of DNA polymerases II and III. By contrast, contributions specific to disruption of DNA repair systems cannot be detected, suggesting that temporary accelerations of mutagenesis associated with such disruptions are unimportant for within-species evolution. These observations demonstrate that accumulation of diversity in bacterial strains in nature is predominantly associated with errors of DNA polymerases.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Mutação , DNA Polimerase Dirigida por DNA/genética , Mutagênese , Bactérias/genética , DNA Bacteriano/genética
4.
Genome Biol Evol ; 15(10)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37708413

RESUMO

The sleeping chironomid Polypedilum vanderplanki is capable of anhydrobiosis, a striking example of adaptation to extreme desiccation. Tolerance to complete desiccation in this species is associated with emergence of multiple paralogs of protective genes. One of the gene families highly expressed under anhydrobiosis and involved in this process is protein-L-isoaspartate (D-aspartate) O-methyltransferases (PIMTs). Recently, another closely related midge was discovered, Polypedilum pembai, which is able not only to tolerate desiccation but also to survive multiple desiccation-rehydration cycles. To investigate the evolution of anhydrobiosis in these species, we sequenced and assembled the genome of P. pembai and compared it with P. vanderplanki and also performed a population genomics analysis of several populations of P. vanderplanki and one population of P. pembai. We observe positive selection and radical changes in the genetic architecture of the PIMT locus between the two species, including its amplification in the P. pembai lineage. In particular, PIMT-4, the most highly expressed of these PIMTs, is present in six copies in the P. pembai; these copies differ in expression profiles, suggesting possible sub- or neofunctionalization. The nucleotide diversity of the genomic region carrying these new genes is decreased in P. pembai, but not in the orthologous region carrying the ancestral gene in P. vanderplanki, providing evidence for a selective sweep associated with postduplication adaptation in the former. Overall, our results suggest an extensive relatively recent and likely ongoing adaptation of the mechanisms of anhydrobiosis.

5.
Viruses ; 15(7)2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37515103

RESUMO

The Omicron variant of SARS-CoV-2 rapidly spread worldwide in late 2021-early 2022, displacing the previously prevalent Delta variant. Before 16 December 2021, community transmission had already been observed in tens of countries globally. However, in Russia, the majority of reported cases at that time had been sporadic and associated with travel. Here, we report an Omicron outbreak at a student dormitory in Saint Petersburg between 16-29 December 2021, which was the earliest known instance of a large-scale community transmission in Russia. Out of the 465 sampled residents of the dormitory, 180 (38.7%) tested PCR-positive. Among the 118 residents for whom the variant had been tested by whole-genome sequencing, 111 (94.1%) were found to carry the Omicron variant. Among these 111 residents, 60 (54.1%) were vaccinated or had reported a previous infection of COVID-19. Phylogenetic analysis confirmed that the outbreak was caused by a single introduction of the BA.1.1 sub-lineage of the Omicron variant. The dormitory-derived clade constituted a significant proportion of BA.1.1 samples in Saint Petersburg and has spread to other regions of Russia and even to other countries. The rapid spread of the Omicron variant in a population with preexisting immunity to previous variants underlines its propensity for immune evasion.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Filogenia , Surtos de Doenças , Federação Russa/epidemiologia
6.
PLoS One ; 18(5): e0285664, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37192187

RESUMO

In 2020, SARS-CoV-2 has spread rapidly across the globe, with most nations failing to prevent or substantially delay its introduction. While many countries have imposed some limitations on trans-border passenger traffic, the effect of these measures on the global spread of COVID-19 strains remains unclear. Here, we report an analysis of 3206 whole-genome sequences of SARS-CoV-2 samples from 78 regions of Russia covering the period before the spread of variants of concern (between March and November 2020). We describe recurring imports of multiple COVID-19 strains into Russia throughout this period, giving rise to 457 uniquely Russian transmission lineages, as well as repeated cross-border transmissions of local circulating variants out of Russia. While the phylogenetically inferred rate of cross-border transmissions was somewhat reduced during the period of the most stringent border closure, it still remained high, with multiple inferred imports that each led to detectable spread within the country. These results indicate that partial border closure has had little effect on trans-border transmission of variants, which helps explain the rapid global spread of newly arising SARS-CoV-2 variants throughout the pandemic.


Assuntos
COVID-19 , Entorses e Distensões , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Genômica , Federação Russa/epidemiologia
7.
BMC Biol ; 21(1): 103, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37158879

RESUMO

BACKGROUND: Aging in postmitotic tissues is associated with clonal expansion of somatic mitochondrial deletions, the origin of which is not well understood. Such deletions are often flanked by direct nucleotide repeats, but this alone does not fully explain their distribution. Here, we hypothesized that the close proximity of direct repeats on single-stranded mitochondrial DNA (mtDNA) might play a role in the formation of deletions. RESULTS: By analyzing human mtDNA deletions in the major arc of mtDNA, which is single-stranded during replication and is characterized by a high number of deletions, we found a non-uniform distribution with a "hot spot" where one deletion breakpoint occurred within the region of 6-9 kb and another within 13-16 kb of the mtDNA. This distribution was not explained by the presence of direct repeats, suggesting that other factors, such as the spatial proximity of these two regions, can be the cause. In silico analyses revealed that the single-stranded major arc may be organized as a large-scale hairpin-like loop with a center close to 11 kb and contacting regions between 6-9 kb and 13-16 kb, which would explain the high deletion activity in this contact zone. The direct repeats located within the contact zone, such as the well-known common repeat with a first arm at 8470-8482 bp (base pair) and a second arm at 13,447-13,459 bp, are three times more likely to cause deletions compared to direct repeats located outside of the contact zone. A comparison of age- and disease-associated deletions demonstrated that the contact zone plays a crucial role in explaining the age-associated deletions, emphasizing its importance in the rate of healthy aging. CONCLUSIONS: Overall, we provide topological insights into the mechanism of age-associated deletion formation in human mtDNA, which could be used to predict somatic deletion burden and maximum lifespan in different human haplogroups and mammalian species.


Assuntos
Genoma Mitocondrial , Animais , Humanos , Mitocôndrias , DNA Mitocondrial/genética , Genoma Humano , Estrutura Secundária de Proteína , DNA de Cadeia Simples , Mamíferos
8.
PLoS Negl Trop Dis ; 17(3): e0011141, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36972237

RESUMO

Tick-borne encephalitis virus (TBEV) is a flavivirus which causes an acute or sometimes chronic infection that frequently has severe neurological consequences, and is a major public health threat in Eurasia. TBEV is genetically classified into three distinct subtypes; however, at least one group of isolates, the Baikal subtype, also referred to as "886-84-like", challenges this classification. Baikal TBEV is a persistent group which has been repeatedly isolated from ticks and small mammals in the Buryat Republic, Irkutsk and Trans-Baikal regions of Russia for several decades. One case of meningoencephalitis with a lethal outcome caused by this subtype has been described in Mongolia in 2010. While recombination is frequent in Flaviviridae, its role in the evolution of TBEV has not been established. Here, we isolate and sequence four novel Baikal TBEV samples obtained in Eastern Siberia. Using a set of methods for inference of recombination events, including a newly developed phylogenetic method allowing for formal statistical testing for such events in the past, we find robust support for a difference in phylogenetic histories between genomic regions, indicating recombination at origin of the Baikal TBEV. This finding extends our understanding of the role of recombination in the evolution of this human pathogen.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Carrapatos , Animais , Humanos , Filogenia , Sibéria , Mamíferos , Recombinação Genética
9.
Nat Commun ; 14(1): 149, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627290

RESUMO

Evolution of SARS-CoV-2 in immunocompromised hosts may result in novel variants with changed properties. While escape from humoral immunity certainly contributes to intra-host evolution, escape from cellular immunity is poorly understood. Here, we report a case of long-term COVID-19 in an immunocompromised patient with non-Hodgkin's lymphoma who received treatment with rituximab and lacked neutralizing antibodies. Over the 318 days of the disease, the SARS-CoV-2 genome gained a total of 40 changes, 34 of which were present by the end of the study period. Among the acquired mutations, 12 reduced or prevented the binding of known immunogenic SARS-CoV-2 HLA class I antigens. By experimentally assessing the effect of a subset of the escape mutations, we show that they resulted in a loss of as much as ~1% of effector CD8 T cell response. Our results indicate that CD8 T cell escape represents a major underappreciated contributor to SARS-CoV-2 evolution in humans.


Assuntos
COVID-19 , Linfócitos T Citotóxicos , Humanos , SARS-CoV-2 , Linfócitos T CD8-Positivos , Anticorpos Neutralizantes , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus
10.
Elife ; 112022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36107479

RESUMO

The stability and plasticity of B cell-mediated immune memory ensures the ability to respond to the repeated challenges. We have analyzed the longitudinal dynamics of immunoglobulin heavy chain repertoires from memory B cells, plasmablasts, and plasma cells from the peripheral blood of generally healthy volunteers. We reveal a high degree of clonal persistence in individual memory B cell subsets, with inter-individual convergence in memory and antibody-secreting cells (ASCs). ASC clonotypes demonstrate clonal relatedness to memory B cells, and are transient in peripheral blood. We identify two clusters of expanded clonal lineages with differing prevalence of memory B cells, isotypes, and persistence. Phylogenetic analysis revealed signs of reactivation of persisting memory B cell-enriched clonal lineages, accompanied by new rounds of affinity maturation during proliferation and differentiation into ASCs. Negative selection contributes to both persisting and reactivated lineages, preserving the functionality and specificity of B cell receptors (BCRs) to protect against current and future pathogens.


Assuntos
Células Produtoras de Anticorpos , Memória Imunológica , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Filogenia , Receptores de Antígenos de Linfócitos B/genética
11.
Hum Vaccin Immunother ; 18(6): 2101334, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-35914217

RESUMO

The article highlights the course of long-term SARS-CoV-2 infection in a patient with a secondary immunodeficiency developed with B-cell-depleting therapy of the underlying disease. Analysis of the intrapatient virus evolution revealed an inpatient S:G75A mutation that alters the 72GTNGTKR78 motif of the S-protein, with a possible role in binding to alternative cellular receptors. Therapy with a ready-made COVID-19-globulin preparation (native human immunoglobulin G (IgG) derived from the plasma of convalescent COVID-19-patients) resulted in rapid improvement of the patient's condition, fast, and stable elimination of the virus, and passive immunization of the patient for at least 30 days. The results suggest the use of products containing neutralizing antibodies opens new prospects for treatment algorithms for patients with persistent coronavirus infection, as well as for passive immunization schemes for patients with a presumably reduced specific response to vaccination.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Anticorpos Antivirais , Imunização Passiva/métodos , Anticorpos Neutralizantes
12.
PLoS One ; 17(7): e0270717, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35857745

RESUMO

In 2021, the COVID-19 pandemic was characterized by global spread of several lineages with evidence for increased transmissibility. Throughout the pandemic, Russia has remained among the countries with the highest number of confirmed COVID-19 cases, making it a potential hotspot for emergence of novel variants. Here, we show that among the globally significant variants of concern that have spread globally by late 2020, alpha (B.1.1.7), beta (B.1.351) or gamma (P.1), none have been sampled in Russia before the end of 2020. Instead, between summer 2020 and spring 2021, the epidemic in Russia has been characterized by the spread of two lineages that were rare in most other countries: B.1.1.317 and a sublineage of B.1.1 including B.1.1.397 (hereafter, B.1.1.397+). Their frequency has increased concordantly in different parts of Russia. On top of these lineages, in late December 2020, alpha (B.1.1.7) emerged in Russia, reaching a frequency of 17.4% (95% C.I.: 12.0%-24.4%) in March 2021. Additionally, we identify three novel distinct lineages, AT.1, B.1.1.524 and B.1.1.525, that have started to spread, together reaching the frequency of 11.8% (95% C.I.: 7.5%-18.1%) in March 2021. These lineages carry combinations of several notable mutations, including the S:E484K mutation of concern, deletions at a recurrent deletion region of the spike glycoprotein (S:Δ140-142, S:Δ144 or S:Δ136-144), and nsp6:Δ106-108 (also known as ORF1a:Δ3675-3677). Community-based PCR testing indicates that these variants have continued to spread in April 2021, with the frequency of B.1.1.7 reaching 21.7% (95% C.I.: 12.3%-35.6%), and the joint frequency of B.1.1.524 and B.1.1.525, 15.2% (95% C.I.: 7.6%-28.2%). Although these variants have been displaced by the onset of delta variant in May-June 2021, lineages B.1.1.317, B.1.1.397+, AT.1, B.1.1.524 and B.1.1.525 and the combinations of mutations comprising them that are found in other lineages merit monitoring.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , Mutação , Pandemias , Federação Russa/epidemiologia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus
13.
Virus Evol ; 8(1): veac044, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35775027

RESUMO

The HIV/AIDS epidemic in Russia is growing, with approximately 100,000 people infected annually. Molecular epidemiology can provide insight into the structure and dynamics of the epidemic. However, its applicability in Russia is limited by the weakness of genetic surveillance, as viral genetic data are only available for <1 per cent of cases. Here, we provide a detailed description of the HIV-1 epidemic for one geographic region of Russia, Oryol Oblast, by collecting and sequencing viral samples from about a third of its known HIV-positive population (768 out of 2,157 patients). We identify multiple introductions of HIV-1 into Oryol Oblast, resulting in eighty-two transmission lineages that together comprise 66 per cent of the samples. Most introductions are of subtype A (315/332), the predominant HIV-1 subtype in Russia, followed by CRF63 and subtype B. Bayesian analysis estimates the effective reproduction number Re for subtype A at 2.8 [1.7-4.4], in line with a growing epidemic. The frequency of CRF63 has been growing more rapidly, with the median Re of 11.8 [4.6-28.7], in agreement with recent reports of this variant rising in frequency in some regions of Russia. In contrast to the patterns described previously in European and North American countries, we see no overrepresentation of males in transmission lineages; meanwhile, injecting drug users are overrepresented in transmission lineages. This likely reflects the structure of the HIV-1 epidemic in Russia dominated by heterosexual and, to a smaller extent, people who inject drugs transmission. Samples attributed to men who have sex with men (MSM) transmission are associated with subtype B and are less prevalent than expected from the male-to-female ratio for this subtype, suggesting underreporting of the MSM transmission route. Together, our results provide a high-resolution description of the HIV-1 epidemic in Oryol Oblast, Russia, characterized by frequent interregional transmission, rapid growth of the epidemic, and rapid displacement of subtype A with the recombinant CRF63 variant.

14.
Elife ; 112022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35532122

RESUMO

It is natural to assume that patterns of genetic variation in hyperpolymorphic species can reveal large-scale properties of the fitness landscape that are hard to detect by studying species with ordinary levels of genetic variation. Here, we study such patterns in a fungus Schizophyllum commune, the most polymorphic species known. Throughout the genome, short-range linkage disequilibrium (LD) caused by attraction of minor alleles is higher between pairs of nonsynonymous than of synonymous variants. This effect is especially pronounced for pairs of sites that are located within the same gene, especially if a large fraction of the gene is covered by haploblocks, genome segments where the gene pool consists of two highly divergent haplotypes, which is a signature of balancing selection. Haploblocks are usually shorter than 1000 nucleotides, and collectively cover about 10% of the S. commune genome. LD tends to be substantially higher for pairs of nonsynonymous variants encoding amino acids that interact within the protein. There is a substantial correlation between LDs at the same pairs of nonsynonymous mutations in the USA and the Russian populations. These patterns indicate that selection in S. commune involves positive epistasis due to compensatory interactions between nonsynonymous alleles. When less polymorphic species are studied, analogous patterns can be detected only through interspecific comparisons.


Changes to DNA known as mutations may alter how the proteins and other components of a cell work, and thus play an important role in allowing living things to evolve new traits and abilities over many generations. Whether a mutation is beneficial or harmful may differ depending on the genetic background of the individual ­ that is, depending on other mutations present in other positions within the same gene ­ due to a phenomenon called epistasis. Epistasis is known to affect how various species accumulate differences in their DNA compared to each other over time. For example, a mutation that is rare in humans and known to cause disease may be widespread in other primates because its negative effect is canceled out by another mutation that is standard for these species but absent in humans. However, it remains unclear whether epistasis plays a significant part in shaping genetic differences between individuals of the same species. A type of fungus known as Schizophyllum commune lives on rotting wood and is found across the world. It is one of the most genetically diverse species currently known, so there is a higher chance of pairs of compensatory mutations occurring and persisting for a long time in S. commune than in most other species, providing a unique opportunity to study epistasis. Here, Stolyarova et al. studied two distinct populations of S. commune, one from the USA and one from Russia. The team found that ­ unlike in humans, flies and other less genetically diverse species ­ epistasis maintains combinations of mutations in S. commune that individually would be harmful to the fungus but together compensate for each other. For example, pairs of mutations affecting specific molecules known as amino acids ­ the building blocks of proteins ­ that physically interact with each other tended to be found together in the same individuals. One potential downside of having pairs of compensatory mutations in the genome is that when the organism reproduces, the process of making sex cells may split up these pairs so that harmful mutations are inherited without their partner mutations. Thus, epistasis may have helped shape the way S. commune and other genetically diverse species have evolved.


Assuntos
Epistasia Genética , Aptidão Genética , Alelos , Haplótipos , Desequilíbrio de Ligação , Mutação , Federação Russa
15.
Virus Evol ; 8(1): veac017, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371558

RESUMO

Delta has outcompeted most preexisting variants of SARS-CoV-2, becoming the globally predominant lineage by mid-2021. Its subsequent evolution has led to the emergence of multiple sublineages, most of which are well-mixed between countries. By contrast, here we show that nearly the entire Delta epidemic in Russia has probably descended from a single import event, or from multiple closely timed imports from a single poorly sampled geographic location. Indeed, over 90 per cent of Delta samples in Russia are characterized by the nsp2:K81N + ORF7a:P45L pair of mutations which is rare outside Russia, putting them in the AY.122 sublineage. The AY.122 lineage was frequent in Russia among Delta samples from the start, and has not increased in frequency in other countries where it has been observed, suggesting that its high prevalence in Russia has probably resulted from a random founder effect rather than a transmission advantage. The apartness of the genetic composition of the Delta epidemic in Russia makes Russia somewhat unusual, although not exceptional, among other countries.

16.
Mol Biol Evol ; 39(3)2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35137193

RESUMO

Insertions and deletions of lengths not divisible by 3 in protein-coding sequences cause frameshifts that usually induce premature stop codons and may carry a high fitness cost. However, this cost can be partially offset by a second compensatory indel restoring the reading frame. The role of such pairs of compensatory frameshifting mutations (pCFMs) in evolution has not been studied systematically. Here, we use whole-genome alignments of protein-coding genes of 100 vertebrate species, and of 122 insect species, studying the prevalence of pCFMs in their divergence. We detect a total of 624 candidate pCFM genes; six of them pass stringent quality filtering, including three human genes: RAB36, ARHGAP6, and NCR3LG1. In some instances, amino acid substitutions closely predating or following pCFMs restored the biochemical similarity of the frameshifted segment to the ancestral amino acid sequence, possibly reducing or negating the fitness cost of the pCFM. Typically, however, the biochemical similarity of the frameshifted sequence to the ancestral one was not higher than the similarity of a random sequence of a protein-coding gene to its frameshifted version, indicating that pCFMs can uncover radically novel regions of protein space. In total, pCFMs represent an appreciable and previously overlooked source of novel variation in amino acid sequences.


Assuntos
Mutação INDEL , Proteínas , Sequência de Aminoácidos , Humanos , Mutação , Fases de Leitura Aberta , Proteínas/genética
17.
PLoS Comput Biol ; 18(2): e1009878, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35180226

RESUMO

Fitness conferred by the same allele may differ between genotypes and environments, and these differences shape variation and evolution. Changes in amino acid propensities at protein sites over the course of evolution have been inferred from sequence alignments statistically, but the existing methods are data-intensive and aggregate multiple sites. Here, we develop an approach to detect individual amino acids that confer different fitness in different groups of species from combined sequence and phylogenetic data. Using the fact that the probability of a substitution to an amino acid depends on its fitness, our method looks for amino acids such that substitutions to them occur more frequently in one group of lineages than in another. We validate our method using simulated evolution of a protein site under different scenarios and show that it has high specificity for a wide range of assumptions regarding the underlying changes in selection, while its sensitivity differs between scenarios. We apply our method to the env gene of two HIV-1 subtypes, A and B, and to the HA gene of two influenza A subtypes, H1 and H3, and show that the inferred fitness changes are consistent with the fitness differences observed in deep mutational scanning experiments. We find that changes in relative fitness of different amino acid variants within a site do not always trigger episodes of positive selection and therefore may not result in an overall increase in the frequency of substitutions, but can still be detected from changes in relative frequencies of different substitutions.


Assuntos
Aminoácidos , Influenza Humana , Substituição de Aminoácidos , Aminoácidos/genética , Evolução Molecular , Humanos , Influenza Humana/genética , Filogenia , Alinhamento de Sequência
18.
Genomics Proteomics Bioinformatics ; 20(1): 60-69, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35033679

RESUMO

A new variant of concern for SARS-CoV-2, Omicron (B.1.1.529), was designated by the World Health Organization on November 26, 2021. This study analyzed the viral genome sequencing data of 108 samples collected from patients infected with Omicron. First, we found that the enrichment efficiency of viral nucleic acids was reduced due to mutations in the region where the primers anneal to. Second, the Omicron variant possesses an excessive number of mutations compared to other variants circulating at the same time (median: 62 vs. 45), especially in the Spike gene. Mutations in the Spike gene confer alterations in 32 amino acid residues, more than those observed in other SARS-CoV-2 variants. Moreover, a large number of nonsynonymous mutations occur in the codons for the amino acid residues located on the surface of the Spike protein, which could potentially affect the replication, infectivity, and antigenicity of SARS-CoV-2. Third, there are 53 mutations between the Omicron variant and its closest sequences available in public databases. Many of these mutations were rarely observed in public databases and had a low mutation rate. In addition, the linkage disequilibrium between these mutations was low, with a limited number of mutations concurrently observed in the same genome, suggesting that the Omicron variant would be in a different evolutionary branch from the currently prevalent variants. To improve our ability to detect and track the source of new variants rapidly, it is imperative to further strengthen genomic surveillance and data sharing globally in a timely manner.


Assuntos
COVID-19 , Ácidos Nucleicos , Aminoácidos , Genômica , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
19.
medRxiv ; 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34909799

RESUMO

BACKGROUND: Delta has outcompeted most preexisting variants of SARS-CoV-2, becoming the globally predominant lineage by mid-2021. Its subsequent evolution has led to emergence of multiple sublineages, many of which are well-mixed between countries. AIM: Here, we aim to study the emergence and spread of the Delta lineage in Russia. METHODS: We use a phylogeographic approach to infer imports of Delta sublineages into Russia, and phylodynamic models to assess the rate of their spread. RESULTS: We show that nearly the entire Delta epidemic in Russia has probably descended from a single import event despite genetic evidence of multiple Delta imports. Indeed, over 90% of Delta samples in Russia are characterized by the nsp2:K81N+ORF7a:P45L pair of mutations which is rare outside Russia, putting them in the AY.122 sublineage. The AY.122 lineage was frequent in Russia among Delta samples from the start, and has not increased in frequency in other countries where it has been observed, suggesting that its high prevalence in Russia has probably resulted from a random founder effect. CONCLUSION: The apartness of the genetic composition of the Delta epidemic in Russia makes Russia somewhat unusual, although not exceptional, among other countries.

20.
Sci Rep ; 11(1): 19578, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599203

RESUMO

Disease caused by mutations of mitochondrial DNA (mtDNA) are highly variable in both presentation and penetrance. Over the last 30 years, clinical recognition of this group of diseases has increased. It has been suggested that haplogroup background could influence the penetrance and presentation of disease-causing mutations; however, to date there is only one well-established example of such an effect: the increased penetrance of two Complex I Leber's hereditary optic neuropathy mutations on a haplogroup J background. This paper conducts the most extensive investigation to date into the importance of haplogroup context in the pathogenicity of mtDNA mutations in Complex I. We searched for proven human point mutations across more than 900 metazoans finding human disease-causing mutations and potential masking variants. We found more than a half of human pathogenic variants as compensated pathogenic deviations (CPD) in at least in one animal species from our multiple sequence alignments. Some variants were found in many species, and some were even the most prevalent amino acids across our dataset. Variants were also found in other primates, and in such cases, we looked for non-human amino acids in sites with high probability to interact with the CPD in folded protein. Using this "local interactions" approach allowed us to find potential masking substitutions in other amino acid sites. We suggest that the masking variants might arise in humans, resulting in variability of mutation effect in our species.


Assuntos
Complexo I de Transporte de Elétrons/genética , Predisposição Genética para Doença , Genômica , Mitocôndrias/genética , Mutação , Alelos , Substituição de Aminoácidos , Complexo I de Transporte de Elétrons/metabolismo , Estudo de Associação Genômica Ampla , Genômica/métodos , Humanos , Mitocôndrias/metabolismo , Filogenia , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...