Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(16): 6408-6416, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38602505

RESUMO

The noninvasive in situ monitoring of the status of drug retention and implant integrity of subcutaneous implants would allow optimization of therapy and avoid periods of subtherapeutic delivery kinetics. A proof-of principle study was conducted to determine the use of microspatially offset low-frequency Raman spectroscopy (micro-SOLFRS) for nonintrusive in situ analysis of subcutaneous drug delivery systems. Caffeine was used as the model drug, and it was embedded in a circular-shape Soluplus matrix via vacuum compression molding. For the exploratory analysis, prototype implants were positioned underneath skin tissue samples, and various caffeine concentrations (1-50% w/w) and micro-SOLFRS displacement settings (Δz = 0-8 mm) were tested from the pseudo three-dimensional (3D)-imaging perspective. This format allowed the optimization of real-time micro-SOLFRS analysis of implants through skin tissue that was embedded in an agarose hydrogel. Notably, this analytical approach allowed the temporal and spatial erosion of the implant and solid-state transformations of caffeine to be distinguished. The spectrometric results correlated with complementary high-performance liquid chromatography (HPLC) determination of changes in drug concentration, illustrating drug dissipation/diffusion characteristics. The discovered capability of micro-SOLFRS for in situ measurements of drugs and implants makes it attractive for biomedical diagnostics that, ultimately, could result in development of a new point-of-care technology.

2.
Anal Chem ; 96(2): 887-894, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38175633

RESUMO

A low-frequency Raman (LFR) probe was coupled to an in-line small-angle X-ray scattering (SAXS) beamline to test the capabilities of a combinatory approach for the determination of lipid and drug behavior during the enzymatic lipolysis of milk-based oral formulations. Cinnarizine was used as the model drug, and its solubilization dynamics as well as its potential impact on the supramolecular structures formed by the digestion products of bovine milk were evaluated from the perspective of both techniques. The SAXS data were superior in distinguishing various liquid crystalline assemblies formed during the digestion process, with LFR providing complementary information regarding the formation of calcium soaps. On the other hand, studying changes in the LFR domain allowed the differentiation of drug solubilization and precipitation; processes that were less clear from the X-ray scattering data. Given the relative simplicity of the combined experimental setup, these results highlight the advantages that the combination of the two techniques can provide for understanding and developing new lipid-based formulations and will help to translate the results obtained at synchrotron facilities to routine analysis procedures in laboratory/industry-based environments.


Assuntos
Leite , Análise Espectral Raman , Animais , Espalhamento a Baixo Ângulo , Leite/química , Síncrotrons , Raios X , Difração de Raios X , Lipídeos/análise , Digestão
3.
Mol Pharm ; 20(8): 4297-4306, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37491730

RESUMO

Adsorption of gut relevant biomolecules onto particles after oral administration of solid oral dosage forms is expected to form a "gastrointestinal corona", which could influence solution-mediated solid-state transformations on exposure of drug particles to gastrointestinal fluids. Low-frequency Raman (LFR) spectroscopy was used in this study to investigate in situ solid-state phase transformations under biorelevant temperature and pH conditions along with the presence of biomolecules. Melt-quenched amorphous indomethacin was used as a model solid particulate, and its solid-state behavior was evaluated at 37 °C and pH 1.2-6.8 with or without the presence of typical bile salt/phospholipid mixtures emulating fed-state conditions. Overall, a change in the solid-state transformation pathway from amorphous to crystalline drug was observed, where an intermediate ε-form that initially formed at pH 6.8 was suppressed by the addition of endogenous gastrointestinal biomolecules. These solid-state changes were corroborated using time-resolved synchrotron small- and wide-angle X-ray scattering (SAXS/WAXS). Additionally, the bile salt and phospholipid mixture partly prevented the otherwise strong aggregation between drug particles at more acidic conditions (pH ≤ 4.5) and helped to shift the balance against the intrinsic hydrophobicity of indomethacin as well as the plasticization effect brought about by the physiological temperature (i.e., the stickiness arising from the supercooled liquid state at 37 °C). The overall results highlight the importance of evaluating the impact that endogenous biomolecules may have on the solid-state characteristics of drug molecules in dissolution media, where analytical tools such as LFR spectroscopy can serve as an attractive avenue for accessing time-resolved solid-state information on time-scales that are difficult to achieve with other techniques such as X-ray diffraction.


Assuntos
Indometacina , Fosfolipídeos , Preparações Farmacêuticas , Difração de Raios X , Cristalização , Espalhamento a Baixo Ângulo , Solubilidade , Indometacina/química
4.
J Phys Chem B ; 127(14): 3223-3230, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-36999811

RESUMO

Low-frequency Raman (LFR) spectroscopy is presented as a viable tool for studying the hydration characteristics of lyotropic liquid crystal systems herein. Monoolein was used as a model compound, and its structural changes were probed both in situ and ex situ which enabled a comparison between different hydration states. A custom-built instrumental configuration allowed the advantages of LFR spectroscopy to be utilized for dynamic hydration analysis. On the other hand, static measurements of equilibrated systems (i.e., with varied aqueous content) showcased the structural sensitivity of LFR spectroscopy. The subtle differences not intuitively observed between similar self-assembled architectures were distinguished by chemometric analysis that directly correlated with the results from small-angle X-ray scattering (SAXS), which is the current "gold standard" method for determining the structure of such materials.

5.
Mol Pharm ; 19(11): 4311-4319, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36170046

RESUMO

This work explores the potential use of spatially offset low-frequency anti-Stokes Raman spectroscopy (SOLFARS) to detect subsurface composition below an emissive surface. A range of bilayer tablets were used to evaluate this approach. Bilayer tablets differed in both the underlying layer composition (active pharmaceutical ingredient to excipient ratio, celecoxib: α-lactose monohydrate) and the upper layer thickness of the fluorescent coating (polyvinylpyrrolidone mixture with sunset yellow FCF dye). Two low- (<300 cm-1) plus mid- (300 to 1800 cm-1) frequency Raman instrumental setups, with lateral displacements for spatial analysis of solid dosage forms, using different excitation wavelengths were explored. The 532 nm system was used to illustrate how the low-frequency anti-Stokes Raman approach works with samples exhibiting extreme fluorescence/background emission interference, and the 785 nm system was used to demonstrate the performance when less extreme fluorescence/emission is present. Qualitative and quantitative chemometric analyses were performed to evaluate the performance of individual spectral domains and their combinations for the determination of the composition of the subsurface layer as well as the coating layer thickness. Overall, the commonly used midfrequency region (300-1800 cm-1) proved superior when using 785 nm incident laser for quantifying the coating thickness (amorphous materials), whereas a combined Stokes and anti-Stokes low-frequency region was found to be superior for quantifying underlying crystalline materials. When exploring individual spectral regions for subsurface composition using spatially offset measurements, the anti-Stokes LFR spectral window performed best. The anti-Stokes low-frequency range also demonstrated an advantage for models composed of data exhibiting high levels of fluorescence (e.g., data collected using 532 nm incident laser), as the Stokes scattering was masked by fluorescence. Transmission measurements were also explored for comparison and showed the best applicability for both upper and lower layer analysis, attributed to the inherently larger bulk sampling volume of this setup. From a practical perspective, these results highlight the potential adjustments that can be made to already existing (in-line) Raman setups to facilitate similar analysis in pharmaceutical industry-based settings.


Assuntos
Lasers , Análise Espectral Raman , Análise Espectral Raman/métodos , Comprimidos , Luz
6.
Anal Chem ; 94(23): 8241-8248, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35647784

RESUMO

In an earlier investigation, low-frequency Raman (LFR) spectroscopy was shown to detect the transition temperature of the ß-relaxation (Tß) in both amorphous celecoxib and various celecoxib amorphous solid dispersions [Be̅rzins, K. Mol. Pharmaceutics 2021, 18(10), 3882-3893]. In this study, we further investigated the application of this technique to determine Tß, an important parameter for estimating crystallization potency of amorphous drugs. Alongside commercially available amorphous drugs (zafirlukast and valsartan disodium salt), differently melt-quenched samples of cimetidine were also analyzed. Overall, the variable-temperature LFR measurements allowed for an easy access to the desired information, including the even lesser transition of the tertiary relaxation motions (Tγ). Thus, the obtained results not only highlighted the sensitivity, but also the practical usefulness of this technique to elucidate (subtle) changes in molecular dynamics within amorphous pharmaceutical systems.


Assuntos
Celecoxib/química , Análise Espectral Raman , Varredura Diferencial de Calorimetria , Cimetidina/química , Indóis/química , Preparações Farmacêuticas , Fenilcarbamatos/química , Sensibilidade e Especificidade , Sulfonamidas/química , Temperatura , Temperatura de Transição , Valsartana/química
7.
Mol Pharm ; 18(10): 3882-3893, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34529437

RESUMO

Compression-induced destabilization was investigated in various celecoxib amorphous solid dispersions containing hydroxypropyl methylcellulose (HPMC), poly(vinylpyrrolidone)/vinyl acetate copolymer (PVP/VA), or poly(vinylpyrrolidone) (PVP) at a concentration range of 1-10% w/w. Pharmaceutically relevant (125 MPa pressure with a minimal dwell time) and extreme (500 MPa pressure with a 60 s dwell time) compression conditions were applied to these systems, and the changes in their physical stability were monitored retrospectively (i.e., in the supercooled state) using dynamic differential scanning calorimetry (DSC) and low-frequency Raman (LFR) measurements over a broad temperature range (-90 to 200 and -150 to 140 °C, respectively). Both techniques revealed similar changes in the crystallization behavior between samples, where the application of a higher compression force of 500 MPa resulted in a more pronounced destabilization effect that was progressively mitigated with increasing polymer content. However, other aspects such as more favorable intermolecular interactions did not appear to have any effect on reducing this undesirable effect. Additionally, for the first time, LFR spectroscopy was used as a viable technique to determine the secondary or local glass-transition temperature, Tg,ß, a major indicator of the physical stability of neat amorphous pharmaceutical systems.


Assuntos
Celecoxib/química , Composição de Medicamentos , Estabilidade de Medicamentos , Varredura Diferencial de Calorimetria , Cristalização , Derivados da Hipromelose/química , Povidona/química , Pressão , Pirrolidinas , Análise Espectral Raman , Compostos de Vinila
8.
Anal Chem ; 93(25): 8986-8993, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34142802

RESUMO

A new combinatory Raman subtechnique of low-frequency and micro-spatially offset Raman spectroscopy (denoted micro-SOLFRS) is demonstrated via analysis of pharmaceutical solid dosage forms. A variety of different (multilayer/multicomponent) model systems comprising celecoxib, α-lactose (the anhydrous and monohydrate form), and polyvinylpyrrolidone (PVP) were probed to test the potency of this newly developed technique to, for example, provide qualitative and quantitative information on surface and subsurface layer characteristics, including their thicknesses as well as enable monitoring of surface-driven solid-state form transformations. A simultaneous collection of low- and, the more commonly used, mid-frequency data enabled a direct comparison between these spectral regions, where the low-frequency domain (hence, micro-SOLFRS) proved superior for every respective analysis carried out herein.


Assuntos
Preparações Farmacêuticas , Análise Espectral Raman , Diagnóstico por Imagem , Formas de Dosagem , Lactose , Povidona
9.
Anal Chem ; 93(8): 3698-3705, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33590756

RESUMO

A new Raman subtechnique, spatially offset low-frequency Raman spectroscopy (SOLFRS), is demonstrated via an analysis of pharmaceutical solid dosage forms. Several different model systems comprised of celecoxib (a popular anti-inflammatory drug), α-lactose anhydrous stable form, α-lactose monohydrate, and polyvinylpyrrolidone (PVP) were used to represent tangible scenarios for the application of SOLFRS. Additionally, the challenges and limitations were highlighted in relation to its real-time use, and potential solutions to address them were also provided. Lastly, the future directions for this new variation of Raman spectroscopic technique were briefly discussed, including its potential for broader application in pharmaceutical analysis and other research fields.


Assuntos
Preparações Farmacêuticas , Análise Espectral Raman , Formas de Dosagem , Lactose , Povidona , Análise Espacial
10.
Mol Pharm ; 18(3): 1408-1418, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33586988

RESUMO

In an earlier investigation, amorphous celecoxib was shown to be sensitive to compression-induced destabilization. This was established by evaluating the physical stability of uncompressed/compressed phases in the supercooled state (Be̅rzins . Mol. Pharmaceutics, 2019, 16(8), 3678-3686). In this study, we investigated the ramifications of compression-induced destabilization in the glassy state as well as the impact of compression on the dissolution behavior. Slow and fast melt-quenched celecoxib disks were compressed with a range of compression pressures (125-500 MPa) and dwell times (0-60 s). These were then monitored for crystallization using low-frequency Raman spectroscopy when kept under dry (∼20 °C; <5% RH) and humid (∼20 °C; 97% RH) storage conditions. Faster crystallization was observed from the samples, which were compressed using more severe compression parameters. Furthermore, crystallization was also affected by the cooling rate used to form the amorphous phases; slow melt-quenched samples exhibited higher sensitivity to compression-induced destabilization. The behavior of the melt-quench disks, subjected to different compression conditions, was continuously monitored during dissolution using low-frequency Raman and UV/vis for the solid-state form and dissolution properties, respectively. Surprisingly the compressed samples exhibited higher apparent dissolution (i.e., higher area under the dissolution curve and initial celecoxib concentration in solution) than the uncompressed samples; however, this is attributed to biaxial fracturing throughout the compressed compacts yielding a greater effective surface area. Differences between the slow and fast melt quenched samples showed some trends similar to those observed for their storage stability.


Assuntos
Celecoxib/química , Varredura Diferencial de Calorimetria/métodos , Química Farmacêutica/métodos , Cristalização/métodos , Composição de Medicamentos/métodos , Estabilidade de Medicamentos , Transição de Fase/efeitos dos fármacos , Solubilidade/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral Raman/métodos , Difração de Raios X/métodos
11.
Mol Pharm ; 18(3): 1264-1276, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33406363

RESUMO

Detection of the solid-state forms of pharmaceutical compounds is important from the drug performance point of view. Low-frequency Raman (LFR) spectroscopy has been demonstrated to be very sensitive in detecting the different solid-state forms of pharmaceutically relevant compounds. The potential of LFR spectroscopy to probe the in situ isothermal dehydration was studied using piroxicam monohydrate (PXM) and theophylline monohydrate (TPMH) as the model drugs. The dehydration of PXM and TPMH at four different temperatures (95, 100, 105, and 110 °C and 50, 60, 70, and 80 °C, respectively) was monitored in both the low- (20-300 cm-1) and mid-frequency (335-1800 cm-1) regions of the Raman spectra. Principal component analysis and multivariate curve resolution were applied for the analysis of the Raman data. Spectral differences observed in both regions highlighted the formation of specific anhydrous forms of piroxicam and theophylline from their respective monohydrates. The formation of the anhydrous forms was detected on different timescales (approx. 2 min) between the low and mid-frequency Raman regions. This finding highlights the differing nature of the vibrations being detected between these two spectral regions. Computational simulations performed were also in agreement with the experimental results, and allowed elucidating the origin of different spectral features.


Assuntos
Preparações Farmacêuticas/química , Cristalização/métodos , Piroxicam/química , Análise Espectral Raman/métodos , Temperatura , Teofilina/química
12.
Mol Pharm ; 17(3): 885-899, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32011151

RESUMO

Techniques enabling in situ monitoring of drug solubilization and changes in the solid-state of the drug during the digestion of milk and milk-based formulations are valuable for predicting the effectiveness of such formulations in improving the oral bioavailability of poorly water-soluble drugs. We have recently reported the use of low-frequency Raman scattering spectroscopy (region of analysis <200 cm-1) as an analytical approach to probe solubilization of drugs during digestion in milk using ferroquine (SSR97193) as the model compound. This study investigates the wider utilization of this technique to probe the solubilization behavior of other poorly water-soluble drugs (halofantrine, lumefantrine, and clofazimine) in not only milk but also infant formula in the absence or presence of bile salts during in vitro digestion. Multivariate analysis was used to interpret changes to the spectra related to the drug as a function of digestion time, through tracking changes in the principal component (PC) values characteristic to the drug signals. Characteristic low-frequency Raman bands for all of the drugs were evident after dispersing the solid drugs in suspension form in milk and infant formula. The drugs were generally solubilized during the digestion of the formulations as observed previously for ferroquine and correlated with behavior determined using small-angle X-ray scattering (SAXS). A greater extent of drug solubilization was also generally observed in the infant formula compared to milk. However, in the case of the drug clofazimine, the correlation between low-frequency Raman scattering and SAXS was not clear, which may arise due to background interference from clofazimine being an intense red dye, which highlights a potential limitation of this new approach. Overall, the in situ monitoring of drug solubilization in milk and milk-based formulations during digestion can be achieved using low-frequency Raman scattering spectroscopy, and the information obtained from studying this spectral region can provide better insights into drug solubilization compared to the mid-frequency Raman region.


Assuntos
Aminoquinolinas/química , Composição de Medicamentos/métodos , Compostos Ferrosos/química , Fórmulas Infantis/química , Lipólise , Metalocenos/química , Leite/química , Análise Espectral Raman/métodos , Água/química , Administração Oral , Aminoquinolinas/farmacocinética , Animais , Disponibilidade Biológica , Clofazimina/química , Clofazimina/farmacocinética , Digestão , Sistemas de Liberação de Medicamentos/métodos , Compostos Ferrosos/farmacocinética , Lumefantrina/química , Lumefantrina/farmacocinética , Metalocenos/farmacocinética , Fenantrenos/química , Fenantrenos/farmacocinética , Espalhamento a Baixo Ângulo , Solubilidade , Suspensões , Difração de Raios X
13.
Mol Pharm ; 16(8): 3678-3686, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31246479

RESUMO

A series of melt-quenched disks of amorphous celecoxib were obtained using two different cooling rates (>100 °C/min and ∼25-30 °C/min) and subjected to different compression pressures (125, 250, and 500 MPa) and dwell times (0, 30, and 60 s). The kinetics of crystallization for these differently prepared melt-quenched disks were probed using a number of methods. Low-frequency Raman spectroscopy was used to monitor isothermal crystallization kinetics, whereas dynamic differential scanning calorimetry served as a complimentary technique to identify changes in form. Although both compression parameters destabilized the amorphous celecoxib, the dwell time was found to have a more critical overall effect. Additionally, the sample history was affirmed to be a factor for limiting the magnitude of compression-induced destabilization.


Assuntos
Celecoxib/química , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Varredura Diferencial de Calorimetria , Cristalização , Estabilidade de Medicamentos , Transição de Fase , Pressão , Solubilidade , Análise Espectral Raman , Temperatura de Transição
14.
J Phys Chem Lett ; 10(9): 2258-2263, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31013099

RESUMO

We have recently shown that real-time monitoring of drug solubilization and changes to solid state of the drug during digestion of milk can be achieved using synchrotron small-angle X-ray scattering. A complementary laboratory-based method to explore such changes is low-frequency Raman spectroscopy, which has been increasingly used to characterize crystalline drugs and their polymorphs in powders and suspensions. This study investigates the use of this technique to monitor in situ drug solubilization in milk during the process of digestion, using a lipolysis model/flow-through configuration identical to that used previously for in situ synchrotron small-angle X-ray scattering studies. An antimalarial drug, ferroquine (SSR97193), was used as the model drug for this study. The Raman spectra were processed using multivariate analysis to extract the drug signals from the milk digestion background. The results showed disappearance of the ferroquine peaks in the low-frequency Raman region (<200 cm-1) after approximately 15-20 min of digestion when milk fat was present in the system, which indicated drug solubilization and was in good agreement with the in situ small-angle X-ray scattering measurements. This proof-of-concept study therefore suggests that low-frequency Raman spectroscopy can be used to monitor drug solubilization in a complex digesting milk medium because of the unique vibrational modes of the drug crystal lattices.


Assuntos
Aminoquinolinas/química , Digestão , Compostos Ferrosos/química , Leite/química , Solventes/química , Animais , Cristalização , Luz , Lipídeos/química , Lipólise , Metalocenos , Solubilidade , Análise Espectral Raman/métodos , Fatores de Tempo
15.
Mol Pharm ; 15(5): 1862-1869, 2018 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-29528656

RESUMO

In an earlier investigation, coamorphous systems of ketoconazole (KTZ) prepared with each oxalic (OXA), tartaric (TAR), citric (CIT), and succinic (SUC) acid, revealed drug-acid ionic or hydrogen bonding interactions in the solid-state (Fung et al, Mol. Pharmaceutics, 2018, 15 (3), 1052-1061). We showed that the drug-acid interactions in KTZ-TAR were the strongest, followed by KTZ-OXA, KTZ-CIT, and KTZ-SUC. In this study, we investigated the crystallization propensity and dissolution behavior of the KTZ-acid coamorphous systems. When in contact with water (either as water vapor or as aqueous phosphate buffer), while KTZ-CIT and KTZ-TAR were physically stable and resisted crystallization, KTZ-SUC and KTZ-OXA crystallized more readily than KTZ alone. The dissolution performances of the coamorphous systems were compared using the area under the curve (AUC) obtained from the concentration-time profiles. KTZ-OXA exhibited the highest AUC, while it was about the same for KTZ-TAR and KTZ-CIT and the lowest for KTZ-SUC. The enhancement in dissolution appeared to become more pronounced as the strength of the acid (OXA > TAR > CIT > SUC) increased. Coamorphization with acid caused at least a two-fold increase in AUC when compared with amorphous KTZ. The decrease in pH of the diffusion layer of the dissolving solid, brought about by the acid, is at least partially responsible for the dissolution enhancement. In addition, the particles of KTZ-OXA, KTZ-TAR, and KTZ-CIT were much smaller than those of KTZ-SUC. The consequent effect on surface area could be another contributing factor to the initial dissolution behavior.


Assuntos
Ácidos/química , Cetoconazol/química , Área Sob a Curva , Cristalização/métodos , Difusão , Ligação de Hidrogênio , Solubilidade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA