Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(11)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37998012

RESUMO

Sin Nombre virus (SNV) is an emerging virus that was first discovered in the Four Corners region of the United States in 1993. The virus causes a disease known as Hantavirus Pulmonary Syndrome (HPS), sometimes called Hantavirus Cardiopulmonary Syndrome (HCPS), a life-threatening illness named for the predominance of infection of pulmonary endothelial cells. SNV is one of several rodent-borne hantaviruses found in the western hemisphere with the capability of causing this disease. The primary reservoir of SNV is the deer mouse (Peromyscus maniculatus), and the virus is transmitted primarily through aerosolized rodent excreta and secreta. Here, we review the history of SNV emergence and its virus biology and relationship to other New World hantaviruses, disease, treatment, and prevention options.

2.
Microorganisms ; 11(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36838410

RESUMO

Approximately 15-30% of all cases of the common cold are due to human coronavirus infections. More recently, the emergence of the more severe respiratory coronaviruses, SARS-CoV and MERS-CoV, have highlighted the increased pathogenic potential of emergent coronaviruses. Lastly, the current emergence of SARS-CoV-2 has demonstrated not only the potential for significant disease caused by emerging coronaviruses, but also the capacity of novel coronaviruses to promote pandemic spread. Largely driven by the global response to the COVID-19 pandemic, significant research in coronavirus biology has led to advances in our understanding of these viruses. In this review, we evaluate the virology, emergence, and evolution of the four endemic coronaviruses associated with the common cold, their relationship to pandemic SARS-CoV-2, and discuss the potential for future emergent human coronaviruses.

3.
Proc Natl Acad Sci U S A ; 119(15): e2119531119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35394863

RESUMO

The RNA-binding protein RIG-I is a key initiator of the antiviral innate immune response. The signaling that mediates the antiviral response downstream of RIG-I is transduced through the adaptor protein MAVS and results in the induction of type I and III interferons (IFNs). This signal transduction occurs at endoplasmic reticulum (ER)­mitochondrial contact sites, to which RIG-I and other signaling proteins are recruited following their activation. RIG-I signaling is highly regulated to prevent aberrant activation of this pathway and dysregulated induction of IFN. Previously, we identified UFL1, the E3 ligase of the ubiquitin-like modifier conjugation system called ufmylation, as one of the proteins recruited to membranes at ER­mitochondrial contact sites in response to RIG-I activation. Here, we show that UFL1, as well as the process of ufmylation, promote IFN induction in response to RIG-I activation. We found that following RNA virus infection, UFL1 is recruited to the membrane-targeting protein 14­3-3ε and that this complex is then recruited to activated RIG-I to promote downstream innate immune signaling. Importantly, we found that 14­3-3ε has an increase in UFM1 conjugation following RIG-I activation. Additionally, loss of cellular ufmylation prevents the interaction of 14­3-3ε with RIG-I, which abrogates the interaction of RIG-I with MAVS and thus the downstream signal transduction that induces IFN. Our results define ufmylation as an integral regulatory component of the RIG-I signaling pathway and as a posttranslational control for IFN induction.


Assuntos
Proteína DEAD-box 58 , Interferons , Infecções por Vírus de RNA , RNA Viral , Receptores Imunológicos , Ubiquitina-Proteína Ligases , Proteínas 14-3-3/metabolismo , Proteína DEAD-box 58/metabolismo , Humanos , Imunidade Inata , Interferons/metabolismo , Infecções por Vírus de RNA/genética , Infecções por Vírus de RNA/imunologia , RNA Viral/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo
4.
J Gen Virol ; 102(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33507143

RESUMO

Coronavirus protease nsp5 (Mpro, 3CLpro) remains a primary target for coronavirus therapeutics due to its indispensable and conserved role in the proteolytic processing of the viral replicase polyproteins. In this review, we discuss the diversity of known coronaviruses, the role of nsp5 in coronavirus biology, and the structure and function of this protease across the diversity of known coronaviruses, and evaluate past and present efforts to develop inhibitors to the nsp5 protease with a particular emphasis on new and mostly unexplored potential targets of inhibition. With the recent emergence of pandemic SARS-CoV-2, this review provides novel and potentially innovative strategies and directions to develop effective therapeutics against the coronavirus protease nsp5.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , SARS-CoV-2/enzimologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Inibidores de Protease Viral/uso terapêutico , Sequência de Aminoácidos , COVID-19/virologia , Coronavirus/enzimologia , Coronavirus/metabolismo , Proteases 3C de Coronavírus/genética , Proteases 3C de Coronavírus/metabolismo , Humanos , Filogenia , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/metabolismo
5.
J Biol Chem ; 294(39): 14231-14240, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31375559

RESUMO

Innate immune detection of viral nucleic acids during viral infection activates a signaling cascade that induces type I and type III IFNs as well as other cytokines, to generate an antiviral response. This signaling is initiated by pattern recognition receptors, such as the RNA helicase retinoic acid-inducible gene I (RIG-I), that sense viral RNA. These sensors then interact with the adaptor protein mitochondrial antiviral signaling protein (MAVS), which recruits additional signaling proteins, including TNF receptor-associated factor 3 (TRAF3) and TANK-binding kinase 1 (TBK1), to form a signaling complex that activates IFN regulatory factor 3 (IRF3) for transcriptional induction of type I IFNs. Here, using several immunological and biochemical approaches in multiple human cell types, we show that the GTPase-trafficking protein RAB1B up-regulates RIG-I pathway signaling and thereby promotes IFN-ß induction and the antiviral response. We observed that RAB1B overexpression increases RIG-I-mediated signaling to IFN-ß and that RAB1B deletion reduces signaling of this pathway. Additionally, loss of RAB1B dampened the antiviral response, indicated by enhanced Zika virus infection of cells depleted of RAB1B. Importantly, we identified the mechanism of RAB1B action in the antiviral response, finding that it forms a protein complex with TRAF3 to facilitate the interaction of TRAF3 with mitochondrial antiviral signaling protein. We conclude that RAB1B regulates TRAF3 and promotes the formation of innate immune signaling complexes in response to nucleic acid sensing during RNA virus infection.


Assuntos
Imunidade Inata , Fator 3 Associado a Receptor de TNF/metabolismo , Infecção por Zika virus/imunologia , Proteínas rab1 de Ligação ao GTP/metabolismo , Animais , Chlorocebus aethiops , Proteína DEAD-box 58/metabolismo , Células HEK293 , Humanos , Interferon beta/metabolismo , Ligação Proteica , Receptores Imunológicos , Transdução de Sinais , Células Vero
6.
Methods Mol Biol ; 1656: 131-142, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28808966

RESUMO

The mitochondrial antiviral signaling (MAVS) protein is a central adaptor protein required for antiviral innate immune signaling. To facilitate its roles in innate immunity, MAVS localizes to multiple intracellular membranous compartments, including the mitochondria, the mitochondrial-associated ER membrane (MAM), and peroxisomes. Studies of MAVS function therefore often require an analysis of MAVS localization. To detect MAVS protein on intracellular membranes, biochemical fractionation to isolate MAMs, mitochondria, or peroxisomes can be used. Further, immunofluorescence with antibodies against specific membrane markers can be used to visualize MAVS distribution throughout the cell. Here, we describe the biochemical fractionation and immunofluorescence protocols used to detect MAVS subcellular localization.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Retículo Endoplasmático/imunologia , Imunofluorescência/métodos , Imunidade Inata , Membranas Intracelulares/imunologia , Mitocôndrias/microbiologia , Peroxissomos/imunologia , Animais , Humanos , Transporte Proteico/imunologia
7.
Curr Opin Microbiol ; 32: 113-119, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27288760

RESUMO

Upon infection, both DNA and RNA viruses can be sensed by pattern recognition receptors (PRRs) in the cytoplasm or the nucleus to activate antiviral innate immunity. Sensing of viral products leads to the activation of a signaling cascade that ultimately results in transcriptional activation of type I and III interferons, as well as other antiviral genes that together mediate viral clearance and inhibit viral spread. Therefore, in order for viruses to replicate and spread efficiently, they must inhibit the host signaling pathways that induce the innate antiviral immune response. In this review, we will highlight recent advances in the understanding of the mechanisms by which viruses evade PRR detection, intermediate signaling molecule activation, transcription factor activation, and the actions of antiviral proteins.


Assuntos
Vírus de DNA/imunologia , Evasão da Resposta Imune/fisiologia , Imunidade Inata/imunologia , Interferon Tipo I/imunologia , Vírus de RNA/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Proteína DEAD-box 58/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Receptores Imunológicos , Transdução de Sinais/imunologia
8.
J Virol ; 89(4): 2080-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25473044

RESUMO

UNLABELLED: A common feature of infection by positive-sense RNA virus is the modification of host cell cytoplasmic membranes that serve as sites of viral RNA synthesis. Coronaviruses induce double-membrane vesicles (DMVs), but the role of DMVs in replication and virus fitness remains unclear. Coronaviruses encode 16 nonstructural proteins (nsps), three of which, nsp3, nsp4, and nsp6, are necessary and sufficient for DMV formation. It has been shown previously that mutations in murine hepatitis virus (MHV) nsp4 loop 1 that alter nsp4 glycosylation are associated with disrupted DMV formation and result in changes in virus replication and RNA synthesis. However, it is not known whether DMV morphology or another function of nsp4 glycosylation is responsible for effects on virus replication. In this study, we tested whether mutations across nsp4, both alone and in combination with mutations that abolish nsp4 glycosylation, affected DMV formation, replication, and fitness. Residues in nsp4 distinct from glycosylation sites, particularly in the endoplasmic reticulum (ER) luminal loop 1, independently disrupted both the number and morphology of DMVs and exacerbated DMV changes associated with loss of glycosylation. Mutations that altered DMV morphology but not glycosylation did not affect virus fitness while viruses lacking nsp4 glycosylation exhibited a loss in fitness. The results support the hypothesis that DMV morphology and numbers are not key determinants of virus fitness. The results also suggest that nsp4 glycosylation serves roles in replication in addition to the organization and stability of MHV-induced double-membrane vesicles. IMPORTANCE: All positive-sense RNA viruses modify host cytoplasmic membranes for viral replication complex formation. Thus, defining the mechanisms of virus-induced membrane modifications is essential for both understanding virus replication and development of novel approaches to virus inhibition. Coronavirus-induced membrane changes include double-membrane vesicles (DMVs) and convoluted membranes. Three viral nonstructural proteins (nsps), nsp3, nsp4, and nsp6, are known to be required for DMV formation. It is unknown how these proteins induce membrane modification or which regions of the proteins are involved in DMV formation and stability. In this study, we show that mutations across nsp4 delay virus replication and disrupt DMV formation and that loss of nsp4 glycosylation is associated with a substantial fitness cost. These results support a critical role for nsp4 in DMV formation and virus fitness.


Assuntos
Membrana Celular/virologia , Vírus da Hepatite Murina/fisiologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Análise Mutacional de DNA , Glicosilação , Vírus da Hepatite Murina/genética , Mutação de Sentido Incorreto , RNA Viral/biossíntese , Proteínas não Estruturais Virais/genética
9.
Virology ; 435(2): 210-3, 2013 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-23099203

RESUMO

Coronavirus replicase nsp4 is critical for virus-induced membrane modifications. An nsp4 mutant (N258T) of murine hepatitis virus (MHV) has been reported to be temperature-sensitive (ts) and to alter membrane targeting. We engineered and recovered all four possible codon variants of N258T in the cloned MHV-A59 background. All mutant viruses demonstrated impaired replication compared to wildtype MHV, but no nsp4 N258T mutant virus was ts, and all variants colocalized with viral protein markers for replication complexes, but not with markers for mitochondria. This study emphasizes that complete genome sequencing may be necessary, even with directed and confirmed reverse genetic mutants.


Assuntos
Vírus da Hepatite Murina/genética , Mutação , Temperatura , Proteínas não Estruturais Virais/genética , Animais , Linhagem Celular , Camundongos , Vírus da Hepatite Murina/fisiologia , Replicação Viral
10.
J Clin Immunol ; 32(5): 1129-40, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22552860

RESUMO

PURPOSE: Sarcoidosis is a non-caseating granulomatous disease for which a role for infectious antigens continues to strengthen. Recent studies have reported molecular evidence of mycobacteria or propionibacteria. We assessed for immune responses against mycobacterial and propionibacterial antigens in sarcoidosis bronchoalveolar lavage (BAL) using flow cytometry, and localized signals consistent with microbial antigens with sarcoidosis specimens, using matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS). METHODS: BAL cells from 27 sarcoidosis, 14 PPD- controls, and 9 subjects with nontuberculosis mycobacterial (NTM) infections were analyzed for production of IFN-γ after stimulation with mycobacterial ESAT-6 and Propionibacterium acnes proteins. To complement the immunological data, MALDI-IMS was performed to localize ESAT-6 and Propionibacterium acnes signals within sarcoidosis and control specimens. RESULTS: CD4+ immunologic analysis for mycobacteria was positive in 17/27 sarcoidosis subjects, compared to 2/14 PPD- subjects, and 5/9 NTM subjects (p = 0.008 and p = 0.71 respectively, Fisher's exact test). There was no significant difference for recognition of P. acnes, which occurred only in sarcoidosis subjects that also recognized ESAT-6. Similar results were also observed for the CD8+ immunologic analysis. MALDI-IMS localized signals consistent with ESAT-6 only within sites of granulomatous inflammation, whereas P. acnes signals were distributed throughout the specimen. CONCLUSIONS: MALDI-IMS localizes signals consistent with ESAT-6 to sarcoidosis granulomas, whereas no specific localization of P. acnes signals is detected. Immune responses against both mycobacterial and P. acnes are present within sarcoidosis BAL, but only mycobacterial signals are distinct from disease controls. These immunologic and molecular investigations support further investigation of the microbial community within sarcoidosis granulomas.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Mycobacterium/imunologia , Propionibacterium acnes/imunologia , Sarcoidose/imunologia , Adulto , Idoso , Líquido da Lavagem Broncoalveolar/citologia , Linfócitos T CD4-Positivos/imunologia , Enterotoxinas/farmacologia , Feminino , Humanos , Interferon gama/imunologia , Masculino , Pessoa de Meia-Idade , Infecções por Mycobacterium/imunologia , Peptídeos/imunologia , Sarcoidose/microbiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Adulto Jovem
11.
Respir Res ; 11: 161, 2010 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-21092305

RESUMO

INTRODUCTION: Sarcoidosis is a multisystem granulomatous disease for which the association with mycobacteria continues to strengthen. It is hypothesized that a single, poorly degradable antigen is responsible for sarcoidosis pathogenesis. Several reports from independent groups support mycobacterial antigens having a role in sarcoidosis pathogenesis. To identify other microbial targets of the adaptive immune response, we tested the ability of CD4+ and CD8+ T cells to recognize multiple mycobacterial antigens. METHODS: Fifty-four subjects were enrolled in this study: 31 sarcoidosis patients, nine non-tuberculosis mycobacterial (NTM) infection controls, and 14 PPD- controls. Using flow cytometry, we assessed for Th1 immune responses to ESAT-6, katG, Ag85A, sodA, and HSP. RESULTS: Alveolar T-cells from twenty-two of the 31 sarcoidosis patients produced a CD4+ response to at least one of ESAT-6, katG, Ag85A, sodA, or HSP, compared to two of 14 PPD- controls (p = 0.0008) and five of nine NTM controls (p = 0.44), while eighteen of the 31 sarcoidosis subjects tested produced a CD8+ response to at least one of the mycobacterial antigens compared to two of 14 PPD- controls (p = 0.009) and three of nine NTM controls (0.26). Not only did the BAL-derived T cells respond to multiple virulence factors, but also to multiple, distinct epitopes within a given protein. The detection of proliferation upon stimulation with the mycobacterial virulence factors demonstrates that these responses are initiated by antigen specific recognition. CONCLUSIONS: Together these results reveal that antigen-specific CD4+ and CD8+ T cells responses to multiple mycobacterial epitopes are present within sites of active sarcoidosis involvement, and that these antigen-specific responses are present at the time of diagnosis.


Assuntos
Imunidade Adaptativa/imunologia , Antígenos de Bactérias/imunologia , Mycobacterium/imunologia , Sarcoidose Pulmonar/imunologia , Células Th1/imunologia , Adulto , Idoso , Células Cultivadas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
12.
J Virol ; 84(1): 280-90, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19846526

RESUMO

Positive-strand RNA viruses induce modifications of cytoplasmic membranes to form replication complexes. For coronaviruses, replicase nonstructural protein 4 (nsp4) has been proposed to function in the formation and organization of replication complexes. Murine hepatitis virus (MHV) nsp4 is glycosylated at residues Asn176 (N176) and N237 during plasmid expression of nsp4 in cells. To test if MHV nsp4 residues N176 and N237 are glycosylated during virus replication and to determine the effects of N176 and N237 on nsp4 function and MHV replication, alanine substitutions of nsp4 N176, N237, or both were engineered into the MHV-A59 genome. The N176A, N237A, and N176A/N237A mutant viruses were viable, and N176 and N237 were glycosylated during infection of wild-type (wt) and mutant viruses. The nsp4 glycosylation mutants exhibited impaired virus growth and RNA synthesis, with the N237A and N176A/N237A mutant viruses demonstrating more profound defects in virus growth and RNA synthesis. Electron microscopic analysis of ultrastructure from infected cells demonstrated that the nsp4 mutants had aberrant morphology of virus-induced double-membrane vesicles (DMVs) compared to those infected with wt virus. The degree of altered DMV morphology directly correlated with the extent of impairment in viral RNA synthesis and virus growth of the nsp4 mutant viruses. The results indicate that nsp4 plays a critical role in the organization and stability of DMVs. The results also support the conclusion that the structure of DMVs is essential for efficient RNA synthesis and optimal replication of coronaviruses.


Assuntos
Membranas Intracelulares , Vírus da Hepatite Murina/fisiologia , Vírus da Hepatite Murina/ultraestrutura , Proteínas não Estruturais Virais/fisiologia , Replicação Viral , Coronaviridae , Glicosilação , Microscopia Eletrônica , Vírus da Hepatite Murina/química , Proteínas Mutantes , Mutação de Sentido Incorreto , RNA Viral/biossíntese
13.
Org Lett ; 10(23): 5385-8, 2008 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-18975952

RESUMO

The structure of mycolactone E, isolated from the frog pathogen Mycobacterium liflandii, was established via organic synthesis. Within the mycolactone family of metabolites, a structural variation has been seen only at the unsaturated fatty acid moiety thus far, and mycolactone E follows this observation. Interestingly, the absolute configuration of its unsaturated fatty acid matches that of the mycolactones from human mycobacteria, rather than the structurally more closely related mycolactone F from fish mycobacteria.


Assuntos
Anuros/microbiologia , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/síntese química , Lactonas/química , Lactonas/síntese química , Mycobacterium/química , Animais , Ácidos Graxos Insaturados/isolamento & purificação , Humanos , Lactonas/isolamento & purificação , Espectroscopia de Ressonância Magnética , Espectrometria de Massas em Tandem
14.
PLoS Negl Trop Dis ; 2(3): e205, 2008 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-18365034

RESUMO

Mycobacterium ulcerans, the causative agent of Buruli ulcer, is an emerging environmental bacterium in Australia and West Africa. The primary risk factor associated with Buruli ulcer is proximity to slow moving water. Environmental constraints for disease are shown by the absence of infection in arid regions of infected countries. A particularly mysterious aspect of Buruli ulcer is the fact that endemic and non-endemic villages may be only a few kilometers apart within the same watershed. Recent studies suggest that aquatic invertebrate species may serve as reservoirs for M. ulcerans, although transmission pathways remain unknown. Systematic studies of the distribution of M. ulcerans in the environment using standard ecological methods have not been reported. Here we present results from the first study based on random sampling of endemic and non-endemic sites. In this study PCR-based methods, along with biofilm collections, have been used to map the presence of M. ulcerans within 26 aquatic sites in Ghana. Results suggest that M. ulcerans is present in both endemic and non-endemic sites and that variable number tandem repeat (VNTR) profiling can be used to follow chains of transmission from the environment to humans. Our results suggesting that the distribution of M. ulcerans is far broader than the distribution of human disease is characteristic of environmental pathogens. These findings imply that focal demography, along with patterns of human water contact, may play a major role in transmission of Buruli ulcer.


Assuntos
Úlcera de Buruli/microbiologia , Mycobacterium ulcerans/fisiologia , Microbiologia da Água , Biofilmes/crescimento & desenvolvimento , DNA Bacteriano/genética , Gana , Humanos , Mycobacterium ulcerans/genética , Mycobacterium ulcerans/crescimento & desenvolvimento , Mycobacterium ulcerans/isolamento & purificação , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Abastecimento de Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...