Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 20(2): 513-531, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38157404

RESUMO

Vibrational spectroscopy is an omnipresent spectroscopic technique to characterize functional nanostructured materials such as zeolites, metal-organic frameworks (MOFs), and metal-halide perovskites (MHPs). The resulting experimental spectra are usually complex, with both low-frequency framework modes and high-frequency functional group vibrations. Therefore, theoretically calculated spectra are often an essential element to elucidate the vibrational fingerprint. In principle, there are two possible approaches to calculate vibrational spectra: (i) a static approach that approximates the potential energy surface (PES) as a set of independent harmonic oscillators and (ii) a dynamic approach that explicitly samples the PES around equilibrium by integrating Newton's equations of motions. The dynamic approach considers anharmonic and temperature effects and provides a more genuine representation of materials at true operating conditions; however, such simulations come at a substantially increased computational cost. This is certainly true when forces and energy evaluations are performed at the quantum mechanical level. Molecular dynamics (MD) techniques have become more established within the field of computational chemistry. Yet, for the prediction of infrared (IR) and Raman spectra of nanostructured materials, their usage has been less explored and remain restricted to some isolated successes. Therefore, it is currently not a priori clear which methodology should be used to accurately predict vibrational spectra for a given system. A comprehensive comparative study between various theoretical methods and experimental spectra for a broad set of nanostructured materials is so far lacking. To fill this gap, we herein present a concise overview on which methodology is suited to accurately predict vibrational spectra for a broad range of nanostructured materials and formulate a series of theoretical guidelines to this purpose. To this end, four different case studies are considered, each treating a particular material aspect, namely breathing in flexible MOFs, characterization of defects in the rigid MOF UiO-66, anharmonic vibrations in the metal-halide perovskite CsPbBr3, and guest adsorption on the pores of the zeolite H-SSZ-13. For all four materials, in their guest- and defect-free state and at sufficiently low temperatures, both the static and dynamic approach yield qualitatively similar spectra in agreement with experimental results. When the temperature is increased, the harmonic approximation starts to fail for CsPbBr3 due to the presence of anharmonic phonon modes. Also, the spectroscopic fingerprints of defects and guest species are insufficiently well predicted by a simple harmonic model. Both phenomena flatten the potential energy surface (PES), which facilitates the transitions between metastable states, necessitating dynamic sampling. On the basis of the four case studies treated in this Review, we can propose the following theoretical guidelines to simulate accurate vibrational spectra of functional solid-state materials: (i) For nanostructured crystalline framework materials at low temperature, insights into the lattice dynamics can be obtained using a static approach relying on a few points on the PES and an independent set of harmonic oscillators. (ii) When the material is evaluated at higher temperatures or when additional complexity enters the system, e.g., strong anharmonicity, defects, or guest species, the harmonic regime breaks down and dynamic sampling is required for a correct prediction of the phonon spectrum. These guidelines and their illustrations for prototype material classes can help experimental and theoretical researchers to enhance the knowledge obtained from a lattice dynamics study.

2.
ACS Catal ; 13(24): 15956-15966, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38125980

RESUMO

The nanoparticle (NP) redox state is an important parameter in the performance of cobalt-based Fischer-Tropsch synthesis (FTS) catalysts. Here, the compositional evolution of individual CoNPs (6-24 nm) in terms of the oxide vs metallic state was investigated in situ during CO/syngas treatment using spatially resolved X-ray absorption spectroscopy (XAS)/X-ray photoemission electron microscopy (X-PEEM). It was observed that in the presence of CO, smaller CoNPs (i.e., ≤12 nm in size) remained in the metallic state, whereas NPs ≥ 15 nm became partially oxidized, suggesting that the latter were more readily able to dissociate CO. In contrast, in the presence of syngas, the oxide content of NPs ≥ 15 nm reduced, while it increased in quantity in the smaller NPs; this reoxidation that occurs primarily at the surface proved to be temporary, reforming the reduced state during subsequent UHV annealing. O K-edge measurements revealed that a key parameter mitigating the redox behavior of the CoNPs were proximate oxygen vacancies (Ovac). These results demonstrate the differences in the reducibility and the reactivity of Co NP size on a Co/TiO2 catalyst and the effect Ovac have on these properties, therefore yielding a better understanding of the physicochemical properties of this popular choice of FTS catalysts.

3.
Philos Trans A Math Phys Eng Sci ; 381(2259): 20220350, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37691470

RESUMO

X-ray diffraction/scattering computed tomography (XDS-CT) methods are a non-destructive class of chemical imaging techniques that have the capacity to provide reconstructions of sample cross-sections with spatially resolved chemical information. While X-ray diffraction CT (XRD-CT) is the most well-established method, recent advances in instrumentation and data reconstruction have seen greater use of related techniques like small angle X-ray scattering CT and pair distribution function CT. Additionally, the adoption of machine learning techniques for tomographic reconstruction and data analysis are fundamentally disrupting how XDS-CT data is processed. The following narrative review highlights recent developments and applications of XDS-CT with a focus on studies in the last five years. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 2)'.

4.
Angew Chem Int Ed Engl ; 62(45): e202312645, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37723118

RESUMO

CO2 hydrogenation to methanol has the potential to serve as a sustainable route to a wide variety of hydrocarbons, fuels and plastics in the quest for net zero. Synergistic Pd/In2 O3 (Palldium on Indium Oxide) catalysts show high CO2 conversion and methanol selectivity, enhancing methanol yield. The identity of the optimal active site for this reaction is unclear, either as a Pd-In alloy, proximate metals, or distinct sites. In this work, we demonstrate that metal-efficient Pd/In2 O3 species dispersed on Al2 O3 can match the performance of pure Pd/In2 O3 systems. Further, we follow the evolution of both Pd and In sites, and surface species, under operando reaction conditions using X-ray Absorption Spectroscpy (XAS) and infrared (IR) spectroscopy. In doing so, we can determine both the nature of the active sites and the influence on the catalytic mechanism.

5.
RSC Sustain ; 1(3): 494-503, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37215582

RESUMO

Metal-Organic Framework (MOF)-derived TiO2, synthesised through the calcination of MIL-125-NH2, is investigated for its potential as a CO2 photoreduction catalyst. The effect of the reaction parameters: irradiance, temperature and partial pressure of water was investigated. Using a two-level design of experiments, we were able to evaluate the influence of each parameter and their potential interactions on the reaction products, specifically the production of CO and CH4. It was found that, for the explored range, the only statistically significant parameter is temperature, with an increase in temperature being correlated to enhanced production of both CO and CH4. Over the range of experimental settings explored, the MOF-derived TiO2 displays high selectivity towards CO (98%), with only a small amount of CH4 (2%) being produced. This is notable when compared to other state-of-the-art TiO2 based CO2 photoreduction catalysts, which often showcase lower selectivity. The MOF-derived TiO2 was found to have a peak production rate of 8.9 × 10-4 µmol cm-2 h-1 (2.6 µmol g-1 h-1) and 2.6 × 10-5 µmol cm-2 h-1 (0.10 µmol g-1 h-1) for CO and CH4, respectively. A comparison is made to commercial TiO2, P25 (Degussa), which was shown to have a similar activity towards CO production, 3.4 × 10-3 µmol cm-2 h-1 (5.9 µmol g-1 h-1), but a lower selectivity preference for CO (3 : 1 CH4 : CO) than the MOF-derived TiO2 material developed here. This paper showcases the potential for MIL-125-NH2 derived TiO2 to be further developed as a highly selective CO2 photoreduction catalyst for CO production.

6.
Philos Trans A Math Phys Eng Sci ; 381(2250): 20220234, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37211033

RESUMO

Vibrational spectroscopy is one of the most well-established and important techniques for characterizing chemical systems. To aid the interpretation of experimental infrared and Raman spectra, we report on recent theoretical developments in the ChemShell computational chemistry environment for modelling vibrational signatures. The hybrid quantum mechanical and molecular mechanical approach is employed, using density functional theory for the electronic structure calculations and classical forcefields for the environment. Computational vibrational intensities at chemical active sites are reported using electrostatic and fully polarizable embedding environments to achieve more realistic vibrational signatures for materials and molecular systems, including solvated molecules, proteins, zeolites and metal oxide surfaces, providing useful insight into the effect of the chemical environment on the signatures obtained from experiment. This work has been enabled by the efficient task-farming parallelism implemented in ChemShell for high-performance computing platforms.  This article is part of a discussion meeting issue 'Supercomputing simulations of advanced materials'.

7.
J Am Chem Soc ; 145(1): 247-259, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36548055

RESUMO

The copper-exchanged zeolite Cu-CHA has received considerable attention in recent years, owing to its application in the selective catalytic reduction (SCR) of NOx species. Here, we study the NH3-SCR reaction mechanism on Cu-CHA using the hybrid quantum mechanical/molecular mechanical (QM/MM) technique and investigate the effects of solvent on the reactivity of active Cu species. To this end, a comparison is made between water- and ammonia-solvated and bare Cu species. The results show the promoting effect of solvent on the oxidation component of the NH3-SCR cycle since the formation of important nitrate species is found to be energetically more favorable on the solvated Cu sites than in the absence of solvent molecules. Conversely, both solvent molecules are predicted to inhibit the reduction component of the NH3-SCR cycle. Diffuse reflectance infrared fourier-transform spectroscopy (DRIFTS) experiments exploiting (concentration) modulation excitation spectroscopy (MES) and phase-sensitive detection (PSD) identified spectroscopic signatures of Cu-nitrate and Cu-nitrosamine (H2NNO), important species which had not been previously observed experimentally. This is further supported by the QM/MM-calculated harmonic vibrational analysis. Additional insights are provided into the reactivity of solvated active sites and the formation of key intermediates including their formation energies and vibrational spectroscopic signatures, allowing the development of a detailed understanding of the reaction mechanism. We demonstrate the role of solvated active sites and their influence on the energetics of important species that must be explicitly considered for an accurate understanding of NH3-SCR kinetics.


Assuntos
Nitratos , Zeolitas , Amônia/química , Zeolitas/química , Solventes , Óxidos de Nitrogênio/química , Espectroscopia de Ressonância Magnética , Catálise
8.
ACS Catal ; 12(15): 9125-9134, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35966607

RESUMO

Improving both the extent of metallic Co nanoparticle (Co NP) formation and their stability is necessary to ensure good catalytic performance, particularly for Fischer-Tropsch synthesis (FTS). Here, we observe how the presence of surface oxygen vacancies (Ovac) on TiO2 can readily reduce individual Co3O4 NPs directly into CoO/Co0 in the freshly prepared sample by using a combination of X-ray photoemission electron microscopy (X-PEEM) coupled with soft X-ray absorption spectroscopy. The Ovac are particularly good at reducing the edge of the NPs as opposed to their center, leading to smaller particles being more reduced than larger ones. We then show how further reduction (and Ovac consumption) is achieved during heating in H2/syngas (H2 + CO) and reveal that Ovac also prevents total reoxidation of Co NPs in syngas, particularly the smallest (∼8 nm) particles, thus maintaining the presence of metallic Co, potentially improving catalyst performance.

9.
Chem Sci ; 13(20): 6089-6097, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35685800

RESUMO

Conductometric gas sensors (CGS) provide a reproducible gas response at a low cost but their operation mechanisms are still not fully understood. In this paper, we elucidate the nature of interactions between SnO2, a common gas-sensitive material, and O2, a ubiquitous gas central to the detection mechanisms of CGS. Using synchrotron radiation, we investigated a working SnO2 sensor under operando conditions via near-ambient pressure (NAP) XPS with simultaneous resistance measurements, and created a depth profile of the variable near-surface stoichiometry of SnO2-x as a function of O2 pressure. Our results reveal a correlation between the dynamically changing surface oxygen vacancies and the resistance response in SnO2-based CGS. While oxygen adsorbates were observed in this study we conclude that these are an intermediary in oxygen transport between the gas phase and the lattice, and that surface oxygen vacancies, not the observed oxygen adsorbates, are central to response generation in SnO2-based gas sensors.

10.
Small Methods ; 5(9): e2100512, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34928070

RESUMO

Synchrotron high-energy X-ray diffraction computed tomography has been employed to investigate, for the first time, commercial cylindrical Li-ion batteries electrochemically cycled over the two cycling rates of C/2 and C/20. This technique yields maps of the crystalline components and chemical species as a cross-section of the cell with high spatiotemporal resolution (550 × 550 images with 20 × 20 × 3 µm3 voxel size in ca. 1 h). The recently developed Direct Least-Squares Reconstruction algorithm is used to overcome the well-known parallax problem and led to accurate lattice parameter maps for the device cathode. Chemical heterogeneities are revealed at both electrodes and are attributed to uneven Li and current distributions in the cells. It is shown that this technique has the potential to become an invaluable diagnostic tool for real-world commercial batteries and for their characterization under operating conditions, leading to unique insights into "real" battery degradation mechanisms as they occur.

11.
J Phys Condens Matter ; 33(48)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34479225

RESUMO

Small angle x-ray scattering and x-ray absorption fine structure are two techniques that have been employed at synchrotron sources ever since their inception. Over the course of the development of the techniques, the introduction of sample environments for added value experiments has grown dramatically. This article reviews past successes, current developments and an exploration of future possibilities for these two x-ray techniques with an emphasis on the developments in the United Kingdom between 1980-2020.

12.
Chem Sci ; 12(9): 3152-3160, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-34164082

RESUMO

The direct functionalization of methane into platform chemicals is arguably one of the holy grails in chemistry. The actual active sites for methane activation are intensively debated. By correlating a wide variety of characterization results with catalytic performance data we have been able to identify mononuclear Fe species as the active site in the Fe/ZSM-5 zeolites for the mild oxidation of methane with H2O2 at 50 °C. The 0.1% Fe/ZSM-5 catalyst with dominant mononuclear Fe species possess an excellent turnover rate (TOR) of 66 molMeOH molFe -1 h-1, approximately 4 times higher compared to the state-of-the-art dimer-containing Fe/ZSM-5 catalysts. Based on a series of advanced in situ spectroscopic studies and 1H- and 13C- nuclear magnetic resonance (NMR), we found that methane activation initially proceeds on the Fe site of mononuclear Fe species. With the aid of adjacent Brønsted acid sites (BAS), methane can be first oxidized to CH3OOH and CH3OH, and then subsequently converted into HOCH2OOH and consecutively into HCOOH. These findings will facilitate the search towards new metal-zeolite combinations for the activation of C-H bonds in various hydrocarbons, for light alkanes and beyond.

14.
Faraday Discuss ; 230: 30-51, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33884381

RESUMO

Increasing carbon dioxide (CO2) emissions, resulting in climate change, have driven the motivation to achieve the effective and sustainable conversion of CO2 into useful chemicals and fuels. Taking inspiration from biological processes, synthetic iron-nickel-sulfides have been proposed as suitable catalysts for the hydrogenation of CO2. In order to experimentally validate this hypothesis, here we report violarite (Fe,Ni)3S4 as a cheap and economically viable catalyst for the hydrogenation of CO2 into formate under mild, alkaline conditions at 125 °C and 20 bar (CO2 : H2 = 1 : 1). Calcination of violarite at 200 °C resulted in excellent catalytic activity, far superior to that of Fe-only and Ni-only sulfides. We further report first principles simulations of the CO2 conversion on the partially oxidised (001) and (111) surfaces of stoichiometric violarite (FeNi2S4) and polydymite (Ni3S4) to rationalise the experimentally observed trends. We have obtained the thermodynamic and kinetic profiles for the reaction of carbon dioxide (CO2) and water (H2O) on the catalyst surfaces via substitution and dissociation mechanisms. We report that the partially oxidised (111) surface of FeNi2S4 is the best catalyst in the series and that the dissociation mechanism is the most favourable. Our study reveals that the partial oxidation of the FeNi2S4 surface, as well as the synergy of the Fe and Ni ions, are important in the catalytic activity of the material for the effective hydrogenation of CO2 to formate.

15.
Faraday Discuss ; 229: 176-196, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33645610

RESUMO

In this study, we investigate the effect of thermal treatment/calcination on the stability and activity of a Na-Mn-W/SiO2 catalyst for the oxidative coupling of methane. The catalyst performance and characterisation measurements suggest that the W species are directly involved in the catalyst active site responsible for CH4 conversion. Under operating conditions, the active components, present in the form of a Na-W-O-Mn molten state, are highly mobile and volatile. By varying the parameters of the calcination protocol, it was shown that these molten components can be partially stabilised, resulting in a catalyst with lower activity (due to loss of surface area) but higher stability even for long duration OCM reaction experiments.

16.
Angew Chem Int Ed Engl ; 60(10): 5125-5131, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33332715

RESUMO

A multimodal imaging study of chabazite is used to show the distribution of and discriminate between different emissive deposits arising as a result of the detemplation process. Confocal imaging, 3D fluorescence lifetime imaging, 3D multispectral fluorescence imaging, and Raman mapping are used to show three different types of emissive behaviours each characterised by different spatial distributions, trends in lifetime, spectral signals, and Raman signatures. A notable difference is seen in the morphology of agglomerated surface deposits and larger subsurface deposits, which experience lifetime augmentation due to spatial confinement. The distribution of organic residue throughout the crystal volume is comparable to XRF mapping that shows Si enrichment on the outer edges and higher Al content through the centre, demonstrating that a fluorescence-based technique can also be used to indirectly comment on the compositional chemistry of the inorganic framework.

17.
Molecules ; 25(21)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143211

RESUMO

Small pore zeolites have shown great potential in a number of catalytic reactions. While Mo-containing medium pore zeolites have been widely studied for methane dehydroaromatisation (MDA), the use of small pore supports has drawn limited attention due to the fast deactivation of the catalyst. This work investigates the structure of the small pore Mo/H-SSZ-13 during catalyst preparation and reaction by operando X-ray absorption spectroscopy (XAS), in situ synchrotron powder diffraction (SPD), and electron microscopy; then, the results are compared with the medium pore Mo/H-ZSM-5. While SPD suggests that during catalyst preparation, part of the MoOx anchors inside the pores, Mo dispersion and subsequent ion exchange was less effective in the small pore catalyst, resulting in the formation of mesopores and Al2(MOO4)3 particles. Unlike Mo/H-ZSM-5, part of the Mo species in Mo/H-SSZ-13 undergoes full reduction to Mo0 during MDA, whereas characterisation of the spent catalyst indicates that differences also exist in the nature of the formed carbon deposits. Hence, the different Mo speciation and the low performance on small pore zeolites can be attributed to mesopores formation during calcination and the ineffective ion exchange into well dispersed Mo-oxo sites. The results open the scope for the optimisation of synthetic routes to explore the potential of small pore topologies.


Assuntos
Metano/química , Molibdênio/química , Zeolitas/química , Catálise , Porosidade
18.
Chem Commun (Camb) ; 56(81): 12150-12153, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-32909021

RESUMO

TiO2-x/W18O49 with core-shell or double-shelled hollow microspheres were synthesized through a facile multi-step solvothermal method. The formation of the hollow microspheres with a double-shell was a result of the Kirkendall effect during the solvothermal treatment with concentrated NaOH. The advanced architecture significantly enhanced the electronic properties of TiO2-x/W18O49, improving by more than 30 times the CO2 photoreduction efficiency compared to the pristine W18O49. Operando DRIFTS measurements revealed that the yellow TiO2-x was a preferable CO2 adsorption and conversion site.

19.
Phys Chem Chem Phys ; 22(34): 18964-18975, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32597462

RESUMO

In this study we present the results from two in situ X-ray diffraction computed tomography experiments of catalytic membrane reactors (CMRs) using Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) hollow fibre membranes and Na-Mn-W/SiO2 catalyst during the oxidative coupling of methane (OCM) reaction. The negative impact of CO2, when added to the inlet gas stream, is seen to be mainly related to the C2+ yield, while no evidence of carbonate phase(s) formation is found during the OCM experiments. The main degradation mechanism of the CMR is suggested to be primarily associated with the solid-state evolution of the BSCF phase rather than the presence of CO2. Specifically, in situ XRD-CT and post-mortem SEM/EDX measurements revealed a collapse of the cubic BSCF phase and subsequent formation of secondary phases, which include needle-like structures and hexagonal Ba6Co4O12 and formation of a BaWO4 layer, the latter being a result of chemical interaction between the membrane and catalyst materials at high temperatures.

20.
Phys Chem Chem Phys ; 22(32): 17814-17823, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32582898

RESUMO

This study presents the application of X-ray diffraction computed tomography for the first time to analyze the crystal dimensions of LiNi0.33Mn0.33Co0.33O2 electrodes cycled to 4.2 and 4.7 V in full cells with graphite as negative electrodes at 1 µm spatial resolution to determine the change in unit cell dimensions as a result of electrochemical cycling. The nature of the technique permits the spatial localization of the diffraction information in 3D and mapping of heterogeneities from the electrode to the particle level. An overall decrease of 0.4% and 0.6% was observed for the unit cell volume after 100 cycles for the electrodes cycled to 4.2 and 4.7 V. Additionally, focused ion beam-scanning electron microscope cross-sections indicate extensive particle cracking as a function of upper cut-off voltage, further confirming that severe cycling stresses exacerbate degradation. Finally, the technique facilitates the detection of parts of the electrode that have inhomogeneous lattice parameters that deviate from the bulk of the sample, further highlighting the effectiveness of the technique as a diagnostic tool, bridging the gap between crystal structure and electrochemical performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...