Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Endocr Rev ; 45(3): 379-413, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38224978

RESUMO

Basal insulin continues to be a vital part of therapy for many people with diabetes. First attempts to prolong the duration of insulin formulations were through the development of suspensions that required homogenization prior to injection. These insulins, which required once- or twice-daily injections, introduced wide variations in insulin exposure contributing to unpredictable effects on glycemia. Advances over the last 2 decades have resulted in long-acting, soluble basal insulin analogues with prolonged and less variable pharmacokinetic exposure, improving their efficacy and safety, notably by reducing nocturnal hypoglycemia. However, adherence and persistence with once-daily basal insulin treatment remains low for many reasons including hypoglycemia concerns and treatment burden. A soluble basal insulin with a longer and flatter exposure profile could reduce pharmacodynamic variability, potentially reducing hypoglycemia, have similar efficacy to once-daily basal insulins, simplify dosing regimens, and improve treatment adherence. Insulin icodec (Novo Nordisk) and insulin efsitora alfa (basal insulin Fc [BIF], Eli Lilly and Company) are 2 such insulins designed for once-weekly administration, which have the potential to provide a further advance in basal insulin replacement. Icodec and efsitora phase 2 clinical trials, as well as data from the phase 3 icodec program indicate that once-weekly insulins provide comparable glycemic control to once-daily analogues, with a similar risk of hypoglycemia. This manuscript details the technology used in the development of once-weekly basal insulins. It highlights the clinical rationale and potential benefits of these weekly insulins while also discussing the limitations and challenges these molecules could pose in clinical practice.


Assuntos
Hipoglicemiantes , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/uso terapêutico , Esquema de Medicação , Insulina/administração & dosagem , Insulina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Insulina de Ação Prolongada/administração & dosagem , Insulina de Ação Prolongada/uso terapêutico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemia/induzido quimicamente
2.
J Biomed Opt ; 28(11): 116002, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38078154

RESUMO

Significance: Over 100 monoclonal antibodies have been approved by the U.S. Food and Drug Administration (FDA) for clinical use; however, a paucity of knowledge exists regarding the injection site behavior of these formulated therapeutics, particularly the effect of antibody, formulation, and tissue at the injection site. A deeper understanding of antibody behavior at the injection site, especially on blood oxygenation through imaging, will help design improved versions of the therapeutics for a wide range of diseases. Aim: The aim of this research is to understand the dynamics of monoclonal antibodies at the injection site as well as how the antibody itself affects the functional characteristics of the injection site [e.g., blood oxygen saturation (sO2)]. Approach: We employed triple-wavelength equipped functional photoacoustic imaging to study the dynamics of dye-labeled and unlabeled monoclonal antibodies at the site of injection in a mouse ear. We injected a near-infrared dye-labeled (and unlabeled) human IgG4 isotype control antibody into the subcutaneous space in mouse ears to analyze the injection site dynamics and quantify molecular movement, as well as its effect on local hemodynamics. Results: We performed pharmacokinetic studies of the antibody in different regions of the mouse body to show that dye labeling does not alter the pharmacokinetic characteristics of the antibody and that mouse ear is a viable model for these initial studies. We explored the movement of the antibody in the interstitial space to show that the bolus area grows by ∼300% over 24 h. We discovered that injection of the antibody transiently reduces the local sO2 levels in mice after prolonged anesthesia without affecting the total hemoglobin content and oxygen extraction fraction. Conclusions: This finding on local oxygen saturation opens a new avenue of study on the functional effects of monoclonal antibody injections. We also show the suitability of the mouse ear model to study antibody dynamics through high-resolution imaging techniques. We quantified the movement of antibodies at the injection site caused by the interstitial fluid, which could be helpful for designing antibodies with tailored absorption speeds in the future.


Assuntos
Anestesia , Técnicas Fotoacústicas , Camundongos , Humanos , Animais , Anticorpos Monoclonais , Tela Subcutânea , Imunoglobulina G
3.
Diabetes Obes Metab ; 25(4): 1080-1090, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36541037

RESUMO

AIM: To assess the safety, tolerability, pharmacokinetics (PK) and pharmacodynamics (PD) of basal insulin Fc (BIF; LY3209590), a fusion protein combining a novel single-chain insulin variant together with human IgG2 Fc domain, following single and multiple once-weekly BIF administration. MATERIALS AND METHODS: The single ascending dose, 15-day study assessed four BIF doses (5-35 mg) in healthy participants and people with type 2 diabetes (T2D). In the 6-week multiple ascending dose study, people with T2D, previously treated with basal insulin, received insulin glargine daily or a one-time loading dose of BIF followed by 5 weeks of once-weekly dosing (1-10 mg). Safety, tolerability and PK and glucose PD were examined. RESULTS: Mean ages of people with T2D (N = 57) and healthy participants (N = 16) in the single-dose study were 58.4 and 35.8 years, respectively; mean body mass index values were 29.5 and 26.1 kg/m2 . BIF had a PK half-life of approximately 17 days, which led to a sustained, dose-dependent decrease in fasting blood glucose for 5 days or longer. No severe hypoglycaemia was observed. The 6-week ascending dose study included 33 people with T2D aged 40-69 years. BIF showed a low peak-to-trough ratio of 1.14 after the last dose at week 6 (steady state). Over 6 weeks, BIF seven-point glucose profiles remained constant and were similar to insulin glargine. Rates and duration of BIF hypoglycaemic events were similar to insulin glargine. CONCLUSIONS: BIF was well tolerated and the PK/PD profile enabled once-weekly dosing with minimal variation in exposure in a treatment interval of 1 week. The findings suggest BIF is suitable for further development as a weekly basal insulin in people with diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Insulina/uso terapêutico , Insulina Glargina/uso terapêutico , Glicemia/metabolismo , Hipoglicemiantes/uso terapêutico , Insulina Regular Humana/uso terapêutico , Glucose/uso terapêutico , Método Duplo-Cego
4.
Adv Sci (Weinh) ; 9(28): e2202907, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35975459

RESUMO

Long-duration in vivo simultaneous imaging of multiple anatomical structures is useful for understanding physiological aspects of diseases, informative for molecular optimization in preclinical models, and has potential applications in surgical settings to improve clinical outcomes. Previous studies involving simultaneous imaging of multiple anatomical structures, for example, blood and lymphatic vessels as well as peripheral nerves and sebaceous glands, have used genetically engineered mice, which require expensive and time-consuming methods. Here, an IgG4 isotype control antibody is labeled with a near-infrared dye and injected into a mouse ear to enable simultaneous visualization of blood and lymphatic vessels, peripheral nerves, and sebaceous glands for up to 3 h using photoacoustic microscopy. For multiple anatomical structure imaging, peripheral nerves and sebaceous glands are imaged inside the injected dye-labeled antibody mass while the lymphatic vessels are visualized outside the mass. The efficacy of the contrast agent to label and localize deep medial lymphatic vessels and lymph nodes using photoacoustic computed tomography is demonstrated. The capability of a single injectable contrast agent to image multiple structures for several hours will potentially improve preclinical therapeutic optimization, shorten discovery timelines, and enable clinical treatments.


Assuntos
Vasos Linfáticos , Técnicas Fotoacústicas , Animais , Meios de Contraste/química , Diagnóstico por Imagem , Imunoglobulina G , Vasos Linfáticos/diagnóstico por imagem , Vasos Linfáticos/patologia , Camundongos , Técnicas Fotoacústicas/métodos
5.
J Pharmacol Exp Ther ; 382(3): 346-355, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35840338

RESUMO

The benefit of once-weekly basal insulin is less frequent dosing, which has the potential to reduce the barrier to injection therapy and impact patient activation, adherence and compliance, quality of life, and outcomes. Basal Insulin Fc (BIF, LY3209590, or insulin efsitora alfa) is a once-weekly basal insulin in clinical testing for type 1 and type 2 diabetes mellitus. BIF is comprised of a novel single-chain variant of insulin fused to a human IgG2 fragment crystallizable region of an antibody domain using a peptide linker. The in vitro binding affinity of BIF for the human insulin receptor (IR) was two orders of magnitude weaker relative to human insulin. BIF stimulated IR phosphorylation in cells with reduced potency, yet full agonism, and exhibited a significantly faster dephosphorylation kinetic profile than human insulin or AspB10 insulin. BIF stimulated de novo lipogenesis in 3T3-L1 adipocytes and cell proliferation in SAOS-2 and H4IIE cells with ≥70-fold reduction in in vitro potency compared with human insulin. BIF possessed markedly reduced binding to hIGF-1R, making definitive measurements unattainable. In vivo pharmacology studies using streptozotocin-treated diabetic rats demonstrated a significant decrease in blood glucose compared with vehicle-treated animals 24 hours post-injection, persisting through 336 hours following subcutaneous administration. In streptozotocin-treated rats, BIF reached time at maximum concentration at 48 hours and possessed a clearance rate of ∼0.85 ml/h per kg, with a terminal half-life of ∼120 hours following subcutaneous administration. These results demonstrate BIF has an in vitro pharmacological profile similar to native insulin, with significantly reduced potency and an extended time-action profile in vivo that supports once-weekly dosing in humans. SIGNIFICANCE STATEMENT: BIF is a novel basal insulin Fc-fusion protein designed for once-weekly dosing. In this study, we demonstrate that BIF has an in vitro pharmacological profile similar to human insulin, but with weaker potency across assays for IR binding and activity. BIF has a PD and PK profile in STZ-treated rats supportive of weekly dosing in humans.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Insulina/metabolismo , Qualidade de Vida , Ratos , Estreptozocina
6.
Mol Metab ; 62: 101522, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35671972

RESUMO

OBJECTIVE: Ultra-rapid insulin formulations control postprandial hyperglycemia; however, inadequate understanding of injection site absorption mechanisms is limiting further advancement. We used photoacoustic imaging to investigate the injection site dynamics of dye-labeled insulin lispro in the Humalog® and Lyumjev® formulations using the murine ear cutaneous model and correlated it with results from unlabeled insulin lispro in pig subcutaneous injection model. METHODS: We employed dual-wavelength optical-resolution photoacoustic microscopy to study the absorption and diffusion of the near-infrared dye-labeled insulin lispro in the Humalog and Lyumjev formulations in mouse ears. We mathematically modeled the experimental data to calculate the absorption rate constants and diffusion coefficients. We studied the pharmacokinetics of the unlabeled insulin lispro in both the Humalog and Lyumjev formulations as well as a formulation lacking both the zinc and phenolic preservative in pigs. The association state of insulin lispro in each of the formulations was characterized using SV-AUC and NMR spectroscopy. RESULTS: Through experiments using murine and swine models, we show that the hexamer dissociation rate of insulin lispro is not the absorption rate-limiting step. We demonstrated that the excipients in the Lyumjev formulation produce local tissue expansion and speed both insulin diffusion and microvascular absorption. We also show that the diffusion of insulin lispro at the injection site drives its initial absorption; however, the rate at which the insulin lispro crosses the blood vessels is its overall absorption rate-limiting step. CONCLUSIONS: This study provides insights into injection site dynamics of insulin lispro and the impact of formulation excipients. It also demonstrates photoacoustic microscopy as a promising tool for studying protein therapeutics. The results from this study address critical questions around the subcutaneous behavior of insulin lispro and the formulation excipients, which could be useful to make faster and better controlled insulin formulations in the future.


Assuntos
Insulina de Ação Curta , Técnicas Fotoacústicas , Animais , Excipientes , Hipoglicemiantes/química , Insulina , Insulina Lispro , Camundongos , Suínos
7.
FEBS J ; 289(9): 2657-2671, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34826178

RESUMO

Insulin receptor (IR) phosphorylation is critical for the assessment of the extent of IR agonism and nuances in the downstream signaling cascade. A thorough identification and monitoring of the phosphorylation events is important for understanding the process of insulin signaling transduction and regulation. Although IR phosphorylation has been studied extensively in the past decades, only a handful of phosphorylation sites can be identified by either traditional antibody-based assays or recent large-scale mass spectrometry-based phosphoproteomics approaches. In the present study, the most exhaustive assessment of the IR phosphorylation was conducted using nano-liquid chromatography-tandem mass spectrometry, in which 13 IR phosphorylation sites and 22 combinations thereof were analyzed. The kinetic analysis included Y965, Y972, S968/969, and S974/976 in the juxtamembrane region; Y1158, Y1162, and Y1163 in the kinase domain; and Y1328, Y1334, S1278, S1320, S1321, and T1348 in the C-terminal region. Employing two different receptor agonists (i.e. insulin and an IR peptide agonist), the data revealed contrasting phosphorylation kinetics across these sites with dynamics far more diverse than expected for known IR agonists. Notably, cell trafficking experiments revealed that the IR peptide agonist was incapable of inducing IR to the early endosome, which is probably linked to a difference in IR phosphorylation. The present study provides a powerful tool for investigating IR signaling and trafficking that will benefit the design of IR agonists with improved therapeutic utility.


Assuntos
Insulina , Receptor de Insulina , Insulina/metabolismo , Cinética , Espectrometria de Massas , Fosforilação , Receptor de Insulina/metabolismo
8.
Endocr Rev ; 41(5)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32396624

RESUMO

Insulin has been available for the treatment of diabetes for almost a century, and the variety of insulin choices today represents many years of discovery and innovation. Insulin has gone from poorly defined extracts of animal pancreata to pure and precisely controlled formulations that can be prescribed and administered with high accuracy and predictability of action. Modifications of the insulin formulation and of the insulin molecule itself have made it possible to approximate the natural endogenous insulin response. Insulin and insulin formulations had to be designed to produce either a constant low basal level of insulin or the spikes of insulin released in response to meals. We discuss how the biochemical properties of endogenous insulin were exploited to either shorten or extend the time-action profiles of injectable insulins by varying the pharmacokinetics (time for appearance of insulin in the blood after injection) and pharmacodynamics (time-dependent changes in blood sugar after injection). This has resulted in rapid-acting, short-acting, intermediate-acting, and long-acting insulins, as well as mixtures and concentrated formulations. An understanding of how various insulins and formulations were designed to solve the challenges of insulin replacement will assist clinicians in meeting the needs of their individual patients.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/farmacocinética , Insulinas/metabolismo , Insulinas/farmacocinética , Humanos , Insulinas/análise
9.
J Diabetes ; 11(4): 292-300, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30264527

RESUMO

The earliest marketed insulins were crude acidic formulations with concentrations of ≤10 units/mL. Since the early 1920s, insulins have improved continually, via bioengineering, process, and chemical modifications. Today, most insulin formulations have a concentration of 100 units/mL (U100). However, more concentrated insulin formulations (200, 300, and 500 units/mL; U200, U300, and U500, respectively) are also available. There is a tendency to assume that concentrated insulins are similar, both to each other and to their U100 counterparts, but this is not always the case: two concentrated insulins, namely insulin degludec U200 and insulin lispro U200, are bioequivalent to their U100 counterparts, whereas regular human insulin U500 and insulin glargine U300 are not. The advent of these concentrated insulins offers greater opportunities to provide tailored therapy for patients; it also introduces potential confusion, and highlights the need for prescriber and patient education. Precise and accurate dedicated insulin delivery devices are also necessary for the safe use of these concentrated insulins. Although some clinicians only use concentrated insulin with obese and severely insulin-resistant patients, other patients would also benefit from the reduced injection volume associated with concentrated insulins, or the modified time-action profile of some concentrated insulins. The aim of this review is to enhance understanding of the historic development and the safe and effective use of concentrated insulins in clinical practice.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Composição de Medicamentos , Hipoglicemiantes/administração & dosagem , Insulinas/administração & dosagem , Humanos , Equivalência Terapêutica
10.
Pharm Res ; 33(12): 2920-2929, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27528391

RESUMO

PURPOSE: Determine the pharmacokinetics of insulin peglispro (BIL) in 5/6-nephrectomized rats and study the absorption in lymph duct cannulated (LDC) sheep. METHODS: BIL is insulin lispro modified with 20-kDa linear PEG at lysine B28 increasing the hydrodynamic size to 4-fold larger than insulin lispro. Pharmacokinetics of BIL and insulin lispro after IV administration were compared in 5/6-nephrectomized and sham rats. BIL was administered IV or SC into the interdigital space of the hind leg, and peripheral lymph and/or serum samples were collected from both LDC and non-LDC sheep to determine pharmacokinetics and absorption route of BIL. RESULTS: The clearance of BIL was similar in 5/6-nephrectomized and sham rats, while the clearance of insulin lispro was 3.3-fold slower in 5/6-nephrectomized rats than in the sham rats. In non-LDC sheep, the terminal half-life after SC was about twice as long vs IV suggesting flip-flop pharmacokinetics. In LDC sheep, bioavailability decreased to <2%; most of the dose was absorbed via the lymphatic system, with 88% ± 19% of the dose collected in the lymph after SC administration. CONCLUSION: This work demonstrates that increasing the hydrodynamic size of insulin lispro through PEGylation can impact both absorption and clearance to prolong drug action.


Assuntos
Hipoglicemiantes/química , Insulina Lispro/química , Linfa/efeitos dos fármacos , Polietilenoglicóis/química , Animais , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Meia-Vida , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacocinética , Injeções Intravenosas , Injeções Subcutâneas , Insulina Lispro/administração & dosagem , Insulina Lispro/farmacocinética , Cinética , Masculino , Peso Molecular , Ratos Sprague-Dawley , Ovinos
11.
J Pharmacol Exp Ther ; 357(3): 459-65, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27026683

RESUMO

The aim of this research was to characterize the in vivo and in vitro properties of basal insulin peglispro (BIL), a new basal insulin, wherein insulin lispro was derivatized through the covalent and site-specific attachment of a 20-kDa polyethylene-glycol (PEG; specifically, methoxy-terminated) moiety to lysine B28. Addition of the PEG moiety increased the hydrodynamic size of the insulin lispro molecule. Studies show there is a prolonged duration of action and a reduction in clearance. Given the different physical properties of BIL, it was also important to assess the metabolic and mitogenic activity of the molecule. Streptozotocin (STZ)-treated diabetic rats were used to study the pharmacokinetic and pharmacodynamic characteristics of BIL. Binding affinity and functional characterization of BIL were compared with those of several therapeutic insulins, insulin AspB10, and insulin-like growth factor 1 (IGF-1). BIL exhibited a markedly longer time to maximum concentration after subcutaneous injection, a greater area under the concentration-time curve, and a longer duration of action in the STZ-treated diabetic rat than insulin lispro. BIL exhibited reduced binding affinity and functional potency as compared with insulin lispro and demonstrated greater selectivity for the human insulin receptor (hIR) as compared with the human insulin-like growth factor 1 receptor. Furthermore, BIL showed a more rapid rate of dephosphorylation following maximal hIR stimulation, and reduced mitogenic potential in an IGF-1 receptor-dominant cellular model. PEGylation of insulin lispro with a 20-kDa PEG moiety at lysine B28 alters the absorption, clearance, distribution, and activity profile receptor, but does not alter its selectivity and full agonist receptor properties.


Assuntos
Insulina Lispro/química , Insulina Lispro/farmacologia , Polietilenoglicóis/química , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Humanos , Insulina Lispro/metabolismo , Insulina Lispro/farmacocinética , Lipogênese/efeitos dos fármacos , Masculino , Camundongos , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/química , Receptor de Insulina/metabolismo , Especificidade por Substrato , Tirosina/metabolismo
12.
Diabetes ; 63(2): 494-504, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24089512

RESUMO

The impact of the novel basal insulin LY2605541 (LY) on hepatic and nonhepatic glucose uptake (non-HGU) was evaluated. Conscious dogs underwent euglycemic clamps with tracer and hepatic balance measurements. Clamp period infusions were peripheral venous regular insulin (0.1 nmol ⋅ kg(-1) ⋅ h(-1) [control], n = 6) or LY (bolus [nmol/kg], continuous [nmol ⋅ kg(-1) ⋅ h(-1)]: 0.5, 0.5 [n = 6]; 0.375, 0.375 [n = 5]; 0.25, 0.25 [n = 4]), somatostatin, and glucose, as well as intraportal glucagon (basal). During the clamp, the dogs switched from net hepatic glucose output to uptake (rates reached 2.1 ± 1.2, 0.9 ± 2.1, 8.6 ± 2.3, and 6.0 ± 1.1 µmol ⋅ kg(-1) ⋅ min(-1) within 5 h in control, LY0.25, LY0.375, and LY0.5, respectively). Non-HGU in LY increased less than in control; the ratio of change from basal in non-HGU to change in net hepatic glucose balance, calculated when glucose infusion rates (GIRs) were ~20 µmol ⋅ kg(-1) ⋅ min(-1) in all groups, was higher in control (1.17 ± 0.38) versus LY0.25 (0.39 ± 0.33), LY0.375 (-0.01 ± 0.13), and LY0.5 (-0.09 ± 0.07). Likewise, the change from baseline in glucose Rd-to-Ra ratio was greatest in control (1.4 ± 0.3 vs. 0.6 ± 0.4, 0.5 ± 0.2, and 0.6 ± 0.2 in LY0.25, LY0.375, and LY0.5, respectively). In contrast to exogenously administered human insulin, LY demonstrated preferential hepatic effects, similar to endogenously secreted insulin. Therefore, the analog might reduce complications associated with current insulin therapy.


Assuntos
Glucose/metabolismo , Hipoglicemiantes/farmacologia , Insulina Lispro/farmacologia , Insulinas/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Polietilenoglicóis/farmacologia , Animais , Glicemia/metabolismo , Cães , Humanos , Ácido Láctico
13.
PLoS One ; 8(3): e58575, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23536797

RESUMO

Fibroblast growth factor 21 is a novel hormonal regulator with the potential to treat a broad variety of metabolic abnormalities, such as type 2 diabetes, obesity, hepatic steatosis, and cardiovascular disease. Human recombinant wild type FGF21 (FGF21) has been shown to ameliorate metabolic disorders in rodents and non-human primates. However, development of FGF21 as a drug is challenging and requires re-engineering of its amino acid sequence to improve protein expression and formulation stability. Here we report the design and characterization of a novel FGF21 variant, LY2405319. To enable the development of a potential drug product with a once-daily dosing profile, in a preserved, multi-use formulation, an additional disulfide bond was introduced in FGF21 through Leu118Cys and Ala134Cys mutations. FGF21 was further optimized by deleting the four N-terminal amino acids, His-Pro-Ile-Pro (HPIP), which was subject to proteolytic cleavage. In addition, to eliminate an O-linked glycosylation site in yeast a Ser167Ala mutation was introduced, thus allowing large-scale, homogenous protein production in Pichia pastoris. Altogether re-engineering of FGF21 led to significant improvements in its biopharmaceutical properties. The impact of these changes was assessed in a panel of in vitro and in vivo assays, which confirmed that biological properties of LY2405319 were essentially identical to FGF21. Specifically, subcutaneous administration of LY2405319 in ob/ob and diet-induced obese (DIO) mice over 7-14 days resulted in a 25-50% lowering of plasma glucose coupled with a 10-30% reduction in body weight. Thus, LY2405319 exhibited all the biopharmaceutical and biological properties required for initiation of a clinical program designed to test the hypothesis that administration of exogenous FGF21 would result in effects on disease-related metabolic parameters in humans.


Assuntos
Fatores de Crescimento de Fibroblastos/farmacologia , Proteínas Recombinantes , Células 3T3 , Substituição de Aminoácidos , Animais , Linhagem Celular , Desenho de Fármacos , Fatores de Crescimento de Fibroblastos/química , Fatores de Crescimento de Fibroblastos/genética , Expressão Gênica , Variação Genética , Células Hep G2 , Humanos , Proteínas Klotho , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Modelos Moleculares , Pichia/genética , Pichia/metabolismo , Conformação Proteica , Estabilidade Proteica , Temperatura
14.
Curr Med Res Opin ; 25(7): 1655-61, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19476407

RESUMO

BACKGROUND: Policy makers around the world are currently considering the creation of a regulatory pathway for follow-on biologics (FOB), which will have to account for the substantial technical challenges associated with FOB development. These challenges will likely involve more complexity than comparability assessments of process changes made by the same manufacturer. The history of industry-regulator comparability discussions helps explain why the same degree of testing and flexibility now applied to change-control within a manufacturer's own process, at this time, cannot be extrapolated to the observed and possibly unknown differences between two manufacturing processes that are independently developed by different (non-collaborating) parties. OBJECTIVES: This commentary provides recommendations on the technical aspects that should be considered in the creation of an approval pathway for FOB products. CONCLUSIONS: In the authors' view, analytical methodology in its current state cannot alone provide full assurance that the FOB is sufficiently similar to the innovator product. Moreover, the FOB manufacturer will not have access to the extensive knowledge accumulated by the innovator manufacturer from early development through marketing. Thus, extensive clinical evaluation will likely be necessary to provide assurance that the FOB is safe and efficacious. If such testing demonstrates the FOB is safe and efficacious per existing regulatory standards, the product should receive marketing approval as a 'similar' product. Since 'similarity' is a fundamentally different determination than establishing interchangeability between the two products, an interchangeability determination must be based on additional testing and market experience to ensure patient safety. Post-marketing surveillance of the FOB should be conducted to ensure that the approved molecule has similar clinical safety and efficacy as the innovator product, prior to any consideration of interchangeability.


Assuntos
Produtos Biológicos/normas , Técnicas de Laboratório Clínico/normas , Diretrizes para o Planejamento em Saúde , Vigilância de Produtos Comercializados/normas , Produtos Biológicos/farmacocinética , Aprovação de Drogas/legislação & jurisprudência , Avaliação de Medicamentos/legislação & jurisprudência , Avaliação de Medicamentos/normas , Humanos , Equivalência Terapêutica
15.
Peptides ; 28(4): 935-48, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17328992

RESUMO

A long-acting (basal) insulin capable of delivering flat, sustained, reproducible glycemic control with once daily administration represents an improvement in the treatment paradigm for both type 1 and type 2 diabetes. Optimization of insulin pharmacodynamics is achievable through structural modification, but often at the expense of alterations in receptor affinity and selectivity. A series of isoelectric point (pI)-shifted insulin analogs based on the human insulin sequence or the GlyA21 acid stable variant were prepared by semi-synthetic methods. The pI shift was achieved through systematic addition of one or more arginine (Arg) or lysine (Lys) residues at the N terminus of the A chain, the N terminus of the B chain, the C terminus of the B chain, or through a combination of additions at two of the three sites. The analogs were evaluated for their affinity for the insulin and IGF-1 receptors, and aqueous solubility under physiological pH conditions. Notably, the presence of positively charged amino acid residues at the N terminus of the A chain was consistently associated with an enhanced insulin to IGF-1 receptor selectivity profile. Increased IGF-1 receptor affinity that results from Arg addition to the C terminus of the B chain was attenuated by cationic extension at the N terminus of the A chain. Analogs 10, 17, and 18 displayed in vitro receptor selectivity similar to that of native insulin and solubility at physiological pH that suggested the potential for extended time action. Accordingly, the in vivo pharmacokinetic and pharmacodynamic profiles of these analogs were established in a somatostatin-induced diabetic dog model. Analog 18 (A0:Arg, A21:Gly, B31:Arg, B32:Arg human insulin) exhibited a pharmacological profile comparable to that of analog 15 (insulin glargine) but with a 4.5-fold more favorable insulin:IGF-1 receptor selectivity. These results demonstrate that the selective combination of positive charge to the N terminus of the A chain and the C terminus of the B chain generates an insulin with sustained pharmacology and a near-native receptor selectivity profile.


Assuntos
Hipoglicemiantes/farmacologia , Insulina/farmacologia , Receptor IGF Tipo 1/agonistas , Receptor de Insulina/agonistas , Células 3T3-L1 , Sequência de Aminoácidos , Aminoácidos/química , Animais , Arginina/química , Ligação Competitiva , Glicemia/metabolismo , Linhagem Celular , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Cães , Feminino , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacocinética , Insulina/análogos & derivados , Insulina/farmacocinética , Ponto Isoelétrico , Lisina/química , Masculino , Camundongos , Dados de Sequência Molecular , Ligação Proteica , Radioimunoensaio , Relação Estrutura-Atividade
16.
Drug Discov Today Technol ; 3(1): 87-94, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-24980106

RESUMO

Therapeutic proteins have made a major impact on medicine, with significant expansion in the past two decades. The medicinal attributes of these agents, particularly their efficacy and often their safety profile, make protein therapeutics attractive, despite the general necessity of invasive (parenteral) delivery. This perceived hurdle has been a primary component in limiting expansion of this class of drug therapies. Strategies that reduce the frequency of administration directly provide greater convenience to the patient, and potentially greater efficacy, that can yield a significant treatment advantage.:

17.
Biochemistry ; 44(33): 11106-14, 2005 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-16101294

RESUMO

Hu007, a humanized IgG1 monoclonal antibody, binds and neutralizes human, cynomolgus, and rabbit IL-1beta but only weakly binds to mouse and rat IL-1beta. Biacore experiments demonstrated that Hu007 and the type-I IL-1 receptor competed for binding to IL-1beta. Increasing salt concentrations decrease the association rate with only moderate effects on the dissociation rate, suggesting that long-range electrostatics are critical for formation of the initial complex. To understand the ligand-binding specificity of Hu007, we have mapped the critical residues involved in the recognition of IL-1beta. Selected residues in cynomolgus IL-1beta were mutated to the corresponding residues in mouse IL-1beta, and the effects of the changes on binding were evaluated by surface plasmon resonance measurements using Biacore. Specifically, substitution of F150S decreased binding affinity by 100-fold, suggesting the importance of hydrophobic interactions in stabilizing the antibody/antigen complex. Substitution of three amino acids near the N- and C-terminal regions of cIL-1beta with those found in mouse IL-1beta (V3I/S5Q/F150S) decreased the binding affinity of Hu007 to IL-1beta by about 1000-fold. Conversely, mutating the corresponding residues in mouse IL-1beta to the human sequence resulted in an increase in binding affinity of about 1000-fold. Hydrogen-deuterium exchange/mass spectrometry analysis confirmed that these regions of IL-1beta were protected from exchange because of antibody binding. The results from this study demonstrate that Hu007 binds to a region located in the open end of the beta-barrel structure of IL-1beta and blocks binding of IL-1beta to its receptor.


Assuntos
Anticorpos Monoclonais/química , Sítios de Ligação de Anticorpos , Deutério/química , Mapeamento de Epitopos , Interleucina-1/química , Modelos Moleculares , Substituição de Aminoácidos/genética , Animais , Anticorpos Monoclonais/imunologia , Afinidade de Anticorpos , Sítios de Ligação de Anticorpos/fisiologia , Mapeamento de Epitopos/métodos , Humanos , Interleucina-1/genética , Interleucina-1/imunologia , Macaca fascicularis , Espectrometria de Massas/métodos , Camundongos , Mutagênese Sítio-Dirigida , Mutação Puntual , Conformação Proteica , Coelhos , Ratos , Especificidade da Espécie , Ressonância de Plasmônio de Superfície/métodos
18.
Anal Chem ; 77(5): 1432-9, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15732928

RESUMO

The spontaneous nonenzymatic deamidation of glutaminyl and asparaginyl residues of peptides and proteins has been observed both in vitro and in vivo. Deamidation may change the structure and function of a peptide or protein, potentially resulting in decreased bioactivity, as well as alterations in pharmacokinetics and antigenicity of the protein pharmaceutical. Therefore, it is necessary to monitor the effect of storage and formulation conditions on deamidation of a protein drug candidate. Of particular interest is the investigation of in vivo deamidation mechanisms of protein drug candidates. Several methods are available to characterize the deamidation of peptides and proteins. We present here a LC/MS/MS method used to evaluate the deamidation of an antibody after in vivo administration. A humanized monoclonal IgG1 antibody (MAb) has several "hot spots" for spontaneous deamidation. One site, amino acid residue Asn55 located in the CDR2 region of the heavy chain, is of particular interest since deamidation at this site greatly decreases the binding activity. MAb was administered to cynomolgus monkeys by intravenous and subcutaneous routes. At various times after dosing, monkey serum was prepared and MAb captured by the immobilized antigen or a goat anti-human IgG Fcgamma antibody. The captured MAb was treated with trypsin followed by endoproteinase Glu-C. The digests were separated on RP-HPLC and analyzed by MS/MS on Q-Tof Global mass spectrometer. Using this method, we were able to determine the deamidation half-life of amino acid residue Asn55 in vivo and the ratio of the deamidated derivatives, i.e., isoAsp55 and Asp55. The method is rapid and sensitive with low-nanogram quantities of protein detected in the biological matrix.


Assuntos
Amidas/metabolismo , Anticorpos Monoclonais/metabolismo , Espectrometria de Massas em Tandem/métodos , Amidas/química , Animais , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/farmacocinética , Asparagina/metabolismo , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Cromatografia Líquida/métodos , Glutamina/metabolismo , Humanos , Imunoglobulina G/química , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Técnicas de Imunoadsorção , Cinética , Macaca fascicularis , Temperatura
19.
Biochemistry ; 41(49): 14524-31, 2002 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-12463751

RESUMO

Erythropoietin (EPO) is a cytokine produced by the kidney whose function is to stimulate red blood cell production in the bone marrow. Previously, it was shown that the affinity of EPO for its receptor, EPOR, is inversely related to the sialylation of EPO carbohydrate. To better understand the properties of EPO that modulate its receptor affinity, various glycoforms were analyzed using surface plasmon resonance. The system used has been well characterized and is based on previous reports employing an EPOR-Fc chimera captured on a Protein A surface. Using three variants of EPO containing different levels of sialylation, we determined that sialic acid decreased the association rate constant (k(on)) about 3-fold. Furthermore, glycosylated EPO had a 20-fold slower k(on) than nonglycosylated EPO, indicating that the core carbohydrate also negatively impacted k(on). The effect of electrostatic forces on EPO binding was studied by measuring binding kinetics in varying NaCl concentrations. Increasing NaCl concentration resulted in a slower k(on) while having little impact on k(off), suggesting that long-range electrostatic interactions are primarily important in determining the rate of association between EPO and EPOR. Furthermore, the glycosylation content (i.e., nonglycosylated vs glycosylated, sialylated vs desialylated) affected the overall sensitivities of k(on) to [NaCl], indicating that sialic acid and the glycan itself each impact the overall effect of these electrostatic forces.


Assuntos
Eritropoetina/química , Eritropoetina/metabolismo , Receptores da Eritropoetina/química , Receptores da Eritropoetina/metabolismo , Configuração de Carboidratos , Linhagem Celular , Eritropoetina/genética , Eritropoetina/normas , Glicosilação , Humanos , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/genética , Cinética , Ácido N-Acetilneuramínico/análise , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Padrões de Referência , Eletricidade Estática , Ressonância de Plasmônio de Superfície , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...