Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Zool ; 70(2): 214-224, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38726246

RESUMO

Female cichlid fish living in African great lakes are known to have sensory systems that are adapted to ambient light environments. These sensory system adaptations are hypothesized to have influenced the evolution of the diverse male nuptial coloration. In rock-dwelling Lake Malawi mbuna cichlids, however, the extent to which ambient light environments influence female sensory systems and potentially associated male nuptial coloration remains unknown. Yet, the ubiquitous blue flank coloration and UV reflection of male mbuna cichlids suggest the potential impacts of the blue-shifted ambient light environment on these cichlid's visual perception and male nuptial coloration in the shallow water depth in Lake Malawi. In the present study, we explored whether and how the sensory bias of females influences intersexual communication in the mbuna cichlid, Metriaclima zebra. A series of choice experiments in various light environments showed that M. zebra females 1) have a preference for the blue-shifted light environment, 2) prefer to interact with males in blue-shifted light environments, 3) do not show a preference between dominant and subordinate males in full-spectrum, long-wavelength filtered, and short-wavelength filtered light environments, and 4) show a "reversed" preference for subordinate males in the UV-filtered light environment. These results suggest that the visual perception of M. zebra females may be biased to the ambient light spectra in their natural habitat by local adaptation and that this sensory bias may influence the evolution of blue and UV reflective patterns in male nuptial coloration.

2.
Mar Pollut Bull ; 172: 112824, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34391007

RESUMO

Aquatic noise has increased in last decades imposing new constraints on aquatic animals' acoustic communication. Meagre (Argyrosomus regius) produce loud choruses during the breeding season, likely facilitating aggregations and mating, and are thus amenable to being impacted by anthropogenic noise. We assessed the impact of boat noise on this species acoustic communication by: evaluating possible masking effects of boat noise on hearing using Auditory Evoked Potentials (AEP) and inspecting changes in chorus sound levels from free ranging fish upon boat passages. Our results point to a significant masking effect of anthropogenic noise since we observed a reduction of ca. 20 dB on the ability to discriminate conspecific calls when exposed to boat noise. Furthermore, we verified a reduction in chorus energy during ferryboat passages, a behavioural effect that might ultimately impact spawning. This study is one of few addressing the effects of boat noise by combining different methodologies both in the lab and with free ranging animals.


Assuntos
Perciformes , Navios , Animais , Audição , Ruído , Vocalização Animal
3.
Front Physiol ; 12: 774975, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975529

RESUMO

In fish, most hormonal productions of the pituitary gland display daily and/or seasonal rhythmic patterns under control by upstream regulators, including internal biological clocks. The pineal hormone melatonin, one main output of the clocks, acts at different levels of the neuroendocrine axis. Melatonin rhythmic production is synchronized mainly by photoperiod and temperature. Here we aimed at better understanding the role melatonin plays in regulating the pituitary hormonal productions in a species of scientific and economical interest, the euryhaline European sea bass Dicentrarchus labrax. We investigated the seasonal variations in mRNA abundance of pituitary hormones in two groups of fish raised one in sea water (SW fish), and one in brackish water (BW fish). The mRNA abundance of three melatonin receptors was also studied in the SW fish. Finally, we investigated the in vitro effects of melatonin or analogs on the mRNA abundance of pituitary hormones at two times of the year and after adaptation to different salinities. We found that (1) the reproductive hormones displayed similar mRNA seasonal profiles regardless of the fish origin, while (2) the other hormones exhibited different patterns in the SW vs. the BW fish. (3) The melatonin receptors mRNA abundance displayed seasonal variations in the SW fish. (4) Melatonin affected mRNA abundance of most of the pituitary hormones in vitro; (5) the responses to melatonin depended on its concentration, the month investigated and the salinity at which the fish were previously adapted. Our results suggest that the productions of the pituitary are a response to multiple factors from internal and external origin including melatonin. The variety of the responses described might reflect a high plasticity of the pituitary in a fish that faces multiple external conditions along its life characterized by marked daily and seasonal changes in photoperiod, temperature and salinity.

4.
Biol Open ; 8(12)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852657

RESUMO

Information transfer between individuals typically depends on multiple sensory channels. Yet, how multi-sensory inputs shape adaptive behavioural decisions remains largely unexplored. We tested the relative importance of audio and visual sensory modalities in opponent size assessment in the vocal cichlid fish, Metriaclima zebra, by playing back mismatched agonistic sounds mimicking larger or smaller opponents during fights of size-matched males. Trials consisted in three 5-min periods: PRE (visual), PBK (acoustic+visual) and POST (visual). During PBK agonistic sounds of smaller (high frequency or low amplitude) or larger (low frequency or high amplitude) males were played back interactively. As a control, we used white noise and silence. We show that sound frequency but not amplitude affects aggression, indicating that spectral cues reliably signal fighting ability. In addition, males reacted to the contrasting audio-visual information by giving prevalence to the sensory channel signalling a larger opponent. Our results suggest that fish can compare the relevance of information provided by different sensory inputs to make behavioural decisions during fights, which ultimately contributes to their individual fitness. These findings have implications for our understanding of the role of multi-sensory inputs in shaping behavioural output during conflicts in vertebrates.

5.
PeerJ ; 5: e3643, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28785523

RESUMO

Communication is essential during social interactions including animal conflicts and it is often a complex process involving multiple sensory channels or modalities. To better understand how different modalities interact during communication, it is fundamental to study the behavioural responses to both the composite multimodal signal and each unimodal component with adequate experimental protocols. Here we test how an African cichlid, which communicates with multiple senses, responds to different sensory stimuli in a social relevant scenario. We tested Maylandia zebra males with isolated chemical (urine or holding water coming both from dominant males), visual (real opponent or video playback) and acoustic (agonistic sounds) cues during agonistic interactions. We showed that (1) these fish relied mostly on the visual modality, showing increased aggressiveness in response to the sight of a real contestant but no responses to urine or agonistic sounds presented separately, (2) video playback in our study did not appear appropriate to test the visual modality and needs more technical prospecting, (3) holding water provoked territorial behaviours and seems to be promising for the investigation into the role of the chemical channel in this species. Our findings suggest that unimodal signals are non-redundant but how different sensory modalities interplay during communication remains largely unknown in fish.

6.
R Soc Open Sci ; 4(6): 170386, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28680686

RESUMO

Animals routinely receive information through different sensory channels, and inputs from a modality may modulate the perception and behavioural reaction to others. In spite of their potential adaptive value, the behavioural correlates of this cross-sensory modulation have been poorly investigated. Due to their predator life, crocodilians deal with decisional conflicts emerging from concurrent stimuli. By testing young Crocodylus niloticus with sounds in the absence or presence of chemical stimuli, we show that (i) the prandial (feeding) state modulates the responsiveness of the animal to a congruent, i.e. food-related olfactory stimulus, (ii) the prandial state alters the responsiveness to an incongruent (independent of food) sound, (iii) fasted, but not sated, crocodiles display selective attention to socially relevant sounds over noise in presence of food odour. Cross-sensory modulation thus appears functional in young Nile crocodiles. It may contribute to decision making in the wild, when juveniles use it to interact acoustically when foraging.

7.
Gen Comp Endocrinol ; 194: 133-41, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24055560

RESUMO

The somatotropic axis, or growth hormone-insulin-like growth factor-1 (GH-IGF-1) axis, of fish is involved in numerous physiological process including regulation of ionic and osmotic balance, lipid, carbohydrate and protein metabolism, growth, reproduction, immune function and behavior. It is thought that GH plays a role in fish development but conflicting results have been obtained concerning the ontogeny of the somatotropic axis. Here we investigated the developmental expression of GH, GH-receptor (GHR) and IGF-1 genes and of a GH-like protein from fertilization until early stages of larval development in two Teleosts species, Danio rerio and Dicentrarchus labrax, by PCR, in situ hybridization and Western blotting. GH, GHR and IGF-1 mRNA were present in unfertilized eggs and at all stages of embryonic development, all three displaying a similar distribution in the two species. First located in the whole embryo (until 12 hpf in zebrafish and 76 hpf in sea bass), the mRNAs appeared then distributed in the head and tail, from where they disappeared progressively to concentrate in the forming pituitary gland. Proteins immunoreactive with a specific sea bass anti-GH antibody were also detected at all stages in this species. Differences in intensity and number of bands suggest that protein processing varies from early to later stages of development. The data show that all actors of the somatotropic axis are present from fertilization in these two species, suggesting they plays a role in early development, perhaps in an autocrine/paracrine mode as all three elements displayed a similar distribution at each stage investigated.


Assuntos
Bass/metabolismo , Peixe-Zebra/metabolismo , Animais , Bass/fisiologia , Feminino , Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Hipófise/metabolismo , Peixe-Zebra/fisiologia
8.
Anim Cogn ; 16(1): 45-54, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22911612

RESUMO

Playback experiments have been a useful tool for studying the function of sounds and the relevance of different sound characteristics in signal recognition in many different species of vertebrates. However, successful playback experiments in sound-producing fish remain rare, and few studies have investigated the role of particular sound features in the encoding of information. In this study, we set-up an apparatus in order to test the relevance of acoustic signals in males of the cichlid Metriaclima zebra. We found that territorial males responded more to playbacks by increasing their territorial activity and approaching the loudspeaker during and after playbacks. If sounds are used to indicate the presence of a competitor, we modified two sound characteristics, that is, the pulse period and the number of pulses, in order to investigate whether the observed behavioural response was modulated by the temporal structure of sounds recorded during aggressive interactions. Modified sounds yielded little or no effect on the behavioural response they elicited in territorial males, suggesting a high tolerance for variations in pulse period and number of pulses. The biological function of sounds in M. zebra and the lack of responsiveness to our temporal modifications are discussed.


Assuntos
Percepção Auditiva , Ciclídeos , Territorialidade , Acústica , Animais , Masculino , Fatores de Tempo
9.
C R Biol ; 335(8): 529-34, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22938919

RESUMO

While acoustic communication has been described in adults of various fish species, our knowledge about the ontogeny of fish sound production is limited. In adults, sound signals are known to be involved during aggressive interactions. However, aggressive behaviour may appear early in the life of fishes due to the possible competition for food and space. If acoustic signals are used to send information to competitors, sounds are likely to play a role during interactions between juvenile fish as well. The apparition and evolution of sound production were monitored in a group of juveniles of the cichlid fish Metriaclima zebra from hatching to 4 months of age. In addition, the link between vocalizations and agonistic behaviour was studied during dyadic interactions at three different ages. Sounds production appeared to be present early in the development of this fish and increased along with the number of aggressive behaviours. Recorded sounds consisted, in juveniles, in isolated pulses showing a decrease in frequency and duration as the fish grew. In adults, sounds became bursts of pulses but the transition from isolated to repetitive pulses was not observed. These results are compared to the existing literature on sound production ontogeny in fishes.


Assuntos
Comportamento Agonístico/fisiologia , Ciclídeos/fisiologia , Vocalização Animal/fisiologia , Envelhecimento/fisiologia , Envelhecimento/psicologia , Comunicação Animal , Animais , Feminino , Masculino , Comportamento Social
10.
Fish Physiol Biochem ; 38(1): 17-41, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21796377

RESUMO

Behaviour represents a reaction to the environment as fish perceive it and is therefore a key element of fish welfare. This review summarises the main findings on how behavioural changes have been used to assess welfare in farmed fish, using both functional and feeling-based approaches. Changes in foraging behaviour, ventilatory activity, aggression, individual and group swimming behaviour, stereotypic and abnormal behaviour have been linked with acute and chronic stressors in aquaculture and can therefore be regarded as likely indicators of poor welfare. On the contrary, measurements of exploratory behaviour, feed anticipatory activity and reward-related operant behaviour are beginning to be considered as indicators of positive emotions and welfare in fish. Despite the lack of scientific agreement about the existence of sentience in fish, the possibility that they are capable of both positive and negative emotions may contribute to the development of new strategies (e.g. environmental enrichment) to promote good welfare. Numerous studies that use behavioural indicators of welfare show that behavioural changes can be interpreted as either good or poor welfare depending on the fish species. It is therefore essential to understand the species-specific biology before drawing any conclusions in relation to welfare. In addition, different individuals within the same species may exhibit divergent coping strategies towards stressors, and what is tolerated by some individuals may be detrimental to others. Therefore, the assessment of welfare in a few individuals may not represent the average welfare of a group and vice versa. This underlines the need to develop on-farm, operational behavioural welfare indicators that can be easily used to assess not only the individual welfare but also the welfare of the whole group (e.g. spatial distribution). With the ongoing development of video technology and image processing, the on-farm surveillance of behaviour may in the near future represent a low-cost, noninvasive tool to assess the welfare of farmed fish.


Assuntos
Bem-Estar do Animal , Comportamento Animal/fisiologia , Peixes/fisiologia , Animais , Pesqueiros
11.
Behav Brain Res ; 153(1): 241-8, 2004 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-15219725

RESUMO

Specialised brain structures allow songbirds to process acoustic signals. One of these brain areas, the NCM (caudomedial neostriatum), shows an immediate-early gene ZENK response when a bird hears a conspecific song. Using a neuro-ethological approach, we investigate if high level of background noise added to conspecific song can modify this song-induced genic activation. We test the ZENK activation in the NCM of adult male Zebra finches Taeniopygya guttata (n = 17) by playing back conspecific signals mixed with different levels of noise, the successful discrimination being reflected by the birds' (n = 6) behavioural responses to these stimuli. From our results, it appears that a high genic activation of the NCM does not necessarily require the audition of an undegraded species-specific signal. Nevertheless, it requires that the signal still contains sufficient information to elicit a behavioural response. The genic activation of the NCM remains thus stable against very high levels of a wide-band background noise, as far as the signal recognition remains possible for the bird.


Assuntos
Estimulação Acústica/métodos , Encéfalo/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Ruído , Animais , Comportamento Animal , Encéfalo/metabolismo , Contagem de Células/métodos , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta à Radiação , Genes Precoces/fisiologia , Genes Precoces/efeitos da radiação , Imuno-Histoquímica/métodos , Masculino , Atividade Motora/efeitos da radiação , Tempo de Reação/efeitos da radiação , Aves Canoras , Transativadores/metabolismo , Regulador Transcricional ERG , Vocalização Animal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...