Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Lipid Res ; 65(4): 100530, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479648

RESUMO

Atherosclerosis results from the deposition and oxidation of LDL and immune cell infiltration in the sub-arterial space leading to arterial occlusion. Studies have shown that transcytosis transports circulating LDL across endothelial cells lining blood vessels. LDL transcytosis is initiated by binding to either scavenger receptor B1 (SR-B1) or activin A receptor-like kinase 1 on the apical side of endothelial cells leading to its transit and release on the basolateral side. HDL is thought to partly protect individuals from atherosclerosis due to its ability to remove excess cholesterol and act as an antioxidant. Apolipoprotein A1 (APOA1), an HDL constituent, can bind to SR-B1, raising the possibility that APOA1/HDL can compete with LDL for SR-B1 binding, thereby limiting LDL deposition in the sub-arterial space. To examine this possibility, we used in vitro approaches to quantify the internalization and transcytosis of fluorescent LDL in coronary endothelial cells. Using microscale thermophoresis and affinity capture, we find that SR-B1 and APOA1 interact and that binding is enhanced when using the cardioprotective variant of APOA1 termed Milano (APOA1-Milano). In male mice, transiently increasing the levels of HDL reduced the acute deposition of fluorescently labeled LDL in the atheroprone inner curvature of the aorta. Reduced LDL deposition was also observed when increasing circulating wild-type APOA1 or the APOA1-Milano variant, with a more robust inhibition from the APOA1-Milano. The results suggest that HDL may limit SR-B1-mediated LDL transcytosis and deposition, adding to the mechanisms by which it can act as an atheroprotective particle.


Assuntos
Apolipoproteína A-I , Lipoproteínas HDL , Lipoproteínas LDL , Transcitose , Animais , Humanos , Masculino , Camundongos , Apolipoproteína A-I/metabolismo , Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Ligação Proteica , Receptores Depuradores Classe B/metabolismo
2.
J Virol ; 98(2): e0166123, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38240592

RESUMO

As use of the ferret model to study influenza A virus (IAV) pathogenicity increases, periodic assessment of data generated in this model is warranted, to identify features associated with virus replication throughout the respiratory tract and to refine future analyses. However, protocol-specific differences present between independent laboratories limit easy aggregation of virological data. We compiled viral titer and clinical data from >1,000 ferrets inoculated with 125 contemporary IAV under a consistent experimental protocol (including high- and low-pathogenicity avian, swine-origin, and human viruses, spanning H1, H2, H3, H5, H7, and H9 subtypes) and examined which meaningful and statistically supported associations were present among numerous quantitative measurements. Viral titers correlated positively between ferret nasal turbinate tissue, lung tissue, and nasal wash specimens, though the strength of the associations varied, notably regarding the particular nasal wash summary measure employed and properties of the virus itself. Use of correlation coefficients and mediation analyses further supported the interconnectedness of viral titer measurements taken at different sites throughout the respiratory tract. IAV possessing mammalian host adaptation markers in the HA and PB2 exhibited more rapid growth in the ferret upper respiratory tract early after infection, supported by quantities derived from infectious titer data to capture infection progression, compared with viruses bearing hallmarks of avian IAV. Collectively, this work identifies summary metrics most closely linked with virological and phenotypic outcomes in ferrets, supporting continued refinement of data analyzed from in vivo experimentation, notably from studies conducted to evaluate the public health risk posed by novel and emerging IAV.IMPORTANCEFerrets are frequently employed to study the pandemic potential of novel and emerging influenza A viruses. However, systematic retrospective analyses of data generated from these experiments are rarely performed, limiting our ability to identify trends in this data and explore how analyses can be refined. Using logarithmic viral titer and clinical data aggregated from one research group over 20 years, we assessed which meaningful and statistically supported associations were present among numerous quantitative measurements obtained from influenza A virus (IAV)-infected ferrets, including those capturing viral titers, infection progression, and disease severity. We identified numerous linear correlations between parameters assessing virus replication at discrete sites in vivo, including parameters capturing infection progression not frequently employed in the field, and sought to investigate the interconnected nature of these associations. This work supports continued refinement of data analyzed from in vivo experimentation, notably from studies which evaluate the public health risk posed by IAV.


Assuntos
Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Humanos , Furões , Vírus da Influenza A/fisiologia , Influenza Humana/virologia , Pulmão , Infecções por Orthomyxoviridae/virologia , Suínos , Modelos Animais de Doenças
3.
Sci Rep ; 13(1): 17243, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821517

RESUMO

A virus infection can be initiated with very few or even a single infectious virion, and as such can become extinct, i.e. stochastically fail to take hold or spread significantly. There are many ways that a fully competent infectious virion, having successfully entered a cell, can fail to cause a productive infection, i.e. one that yields infectious virus progeny. Though many stochastic models (SMs) have been developed and used to estimate a virus infection's establishment probability, these typically neglect infection failure post virus entry. The SM presented herein introduces parameter [Formula: see text] which corresponds to the probability that a virion's entry into a cell will result in a productive cell infection. We derive an expression for the likelihood of infection establishment in this new SM, and find that prophylactic therapy with an antiviral reducing [Formula: see text] is at least as good or better at decreasing the establishment probability, compared to antivirals reducing the rates of virus production or virus entry into cells, irrespective of the SM parameters. We investigate the difference in the fraction of cells consumed by so-called extinct versus established virus infections, and find that this distinction becomes biologically meaningless as the probability of establishment approaches zero. We explain why the release of virions continuously over an infectious cell's lifespan, rather than as a single burst at the end of the cell's lifespan, does not result in an increased risk of infection extinction. We show, instead, that the number of virus released, not the timing of the release, affects infection establishment and associated critical antiviral efficacy.


Assuntos
Viroses , Vírus , Humanos , Internalização do Vírus , Viroses/tratamento farmacológico , Vírion , Antivirais/farmacologia , Antivirais/uso terapêutico
4.
J Virol ; 97(1): e0153622, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36602361

RESUMO

As influenza A viruses (IAV) continue to cross species barriers and cause human infection, the establishment of risk assessment rubrics has improved pandemic preparedness efforts. In vivo pathogenicity and transmissibility evaluations in the ferret model represent a critical component of this work. As the relative contribution of in vitro experimentation to these rubrics has not been closely examined, we sought to evaluate to what extent viral titer measurements over the course of in vitro infections are predictive or correlates of nasal wash and tissue measurements for IAV infections in vivo. We compiled data from ferrets inoculated with an extensive panel of over 50 human and zoonotic IAV (inclusive of swine-origin and high- and low-pathogenicity avian influenza viruses associated with human infection) under a consistent protocol, with all viruses concurrently tested in a human bronchial epithelial cell line (Calu-3). Viral titers in ferret nasal wash specimens and nasal turbinate tissue correlated positively with peak titer in Calu-3 cells, whereas additional phenotypic and molecular determinants of influenza virus virulence and transmissibility in ferrets varied in their association with in vitro viral titer measurements. Mathematical modeling was used to estimate more generalizable key replication kinetic parameters from raw in vitro viral titers, revealing commonalities between viral infection progression in vivo and in vitro. Meta-analyses inclusive of IAV that display a diverse range of phenotypes in ferrets, interpreted with mathematical modeling of viral kinetic parameters, can provide critical information supporting a more rigorous and appropriate contextualization of in vitro experiments toward pandemic preparedness. IMPORTANCE Both in vitro and in vivo models are employed for assessing the pandemic potential of novel and emerging influenza A viruses in laboratory settings, but systematic examinations of how well viral titer measurements obtained in vitro align with results from in vivo experimentation are not frequently performed. We show that certain viral titer measurements following infection of a human bronchial epithelial cell line are positively correlated with viral titers in specimens collected from virus-inoculated ferrets and employ mathematical modeling to identify commonalities between viral infection progression between both models. These analyses provide a necessary first step in enhanced interpretation and incorporation of in vitro-derived data in risk assessment activities and highlight the utility of employing mathematical modeling approaches to more closely examine features of virus replication not identifiable by experimental studies alone.


Assuntos
Vírus da Influenza A , Infecções por Orthomyxoviridae , Medição de Risco , Animais , Humanos , Furões , Vírus da Influenza A/patogenicidade , Influenza Humana , Infecções por Orthomyxoviridae/patologia , Medição de Risco/métodos , Suínos , Replicação Viral , Linhagem Celular , Técnicas In Vitro
6.
7.
PLoS Comput Biol ; 17(10): e1009480, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34662338

RESUMO

The endpoint dilution assay's output, the 50% infectious dose (ID50), is calculated using the Reed-Muench or Spearman-Kärber mathematical approximations, which are biased and often miscalculated. We introduce a replacement for the ID50 that we call Specific INfection (SIN) along with a free and open-source web-application, midSIN (https://midsin.physics.ryerson.ca) to calculate it. midSIN computes a virus sample's SIN concentration using Bayesian inference based on the results of a standard endpoint dilution assay, and requires no changes to current experimental protocols. We analyzed influenza and respiratory syncytial virus samples using midSIN and demonstrated that the SIN/mL reliably corresponds to the number of infections a sample will cause per mL. It can therefore be used directly to achieve a desired multiplicity of infection, similarly to how plaque or focus forming units (PFU, FFU) are used. midSIN's estimates are shown to be more accurate and robust than the Reed-Muench and Spearman-Kärber approximations. The impact of endpoint dilution plate design choices (dilution factor, replicates per dilution) on measurement accuracy is also explored. The simplicity of SIN as a measure and the greater accuracy provided by midSIN make them an easy and superior replacement for the TCID50 and other in vitro culture ID50 measures. We hope to see their universal adoption to measure the infectivity of virus samples.


Assuntos
Bioensaio/métodos , Biologia Computacional/métodos , Ensaio de Placa Viral/métodos , Viroses/virologia , Teorema de Bayes
8.
9.
PLoS Comput Biol ; 16(11): e1008375, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33137116

RESUMO

Mathematical modelling has successfully been used to provide quantitative descriptions of many viral infections, but for the Ebola virus, which requires biosafety level 4 facilities for experimentation, modelling can play a crucial role. Ebola virus modelling efforts have primarily focused on in vivo virus kinetics, e.g., in animal models, to aid the development of antivirals and vaccines. But, thus far, these studies have not yielded a detailed specification of the infection cycle, which could provide a foundational description of the virus kinetics and thus a deeper understanding of their clinical manifestation. Here, we obtain a diverse experimental data set of the Ebola virus infection in vitro, and then make use of Bayesian inference methods to fully identify parameters in a mathematical model of the infection. Our results provide insights into the distribution of time an infected cell spends in the eclipse phase (the period between infection and the start of virus production), as well as the rate at which infectious virions lose infectivity. We suggest how these results can be used in future models to describe co-infection with defective interfering particles, which are an emerging alternative therapeutic.


Assuntos
Ebolavirus/fisiologia , Modelos Biológicos , Replicação Viral/fisiologia , Animais , Teorema de Bayes , Chlorocebus aethiops , Biologia Computacional , Simulação por Computador , Ebolavirus/genética , Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/virologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Técnicas In Vitro , Cinética , Cadeias de Markov , Método de Monte Carlo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Vero , Carga Viral/fisiologia
10.
Epidemics ; 33: 100406, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33096342

RESUMO

When analysing in vitro data, growth kinetics of influenza virus strains are often compared by computing their growth rates, which are sometimes used as proxies for fitness. However, analogous to mathematical models for epidemics, the growth rate can be defined as a function of mechanistic traits: the basic reproduction number (the average number of cells each infected cell infects) and the mean generation time (the average length of a replication cycle). Fitting a model to previously published and newly generated data from experiments in human lung cells, we compared estimates of growth rate, reproduction number and generation time for six influenza A strains. Of four strains in previously published data, A/Canada/RV733/2003 (seasonal H1N1) had the lowest basic reproduction number, followed by A/Mexico/INDRE4487/2009 (pandemic H1N1), then A/Indonesia/05/2005 (spill-over H5N1) and A/Anhui/1/2013 (spill-over H7N9). This ordering of strains was preserved for both generation time and growth rate, suggesting a positive biological correlation between these quantities which have not been previously observed. We further investigated these potential correlations using data from reassortant viruses with different internal proteins (from A/England/195/2009 (pandemic H1N1) and A/Turkey/05/2005 (H5N1)), and the same surface proteins (from A/Puerto Rico/8/34 (lab-adapted H1N1)). Similar correlations between traits were observed for these viruses, confirming our initial findings and suggesting that these patterns were related to the degree of human adaptation of internal genes. Also, the model predicted that strains with a smaller basic reproduction number, shorter generation time and slower growth rate underwent more replication cycles by the time of peak viral load, potentially accumulating mutations more quickly. These results illustrate the utility of mathematical models in inferring traits driving observed differences in in vitro growth of influenza strains.


Assuntos
Influenza Humana/virologia , Animais , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Virus da Influenza A Subtipo H5N1/genética , Subtipo H7N9 do Vírus da Influenza A/genética , Influenza Humana/epidemiologia , Vírus Reordenados/genética , Carga Viral , Replicação Viral/genética
11.
PLoS Comput Biol ; 16(4): e1007705, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32282797

RESUMO

Within the human respiratory tract (HRT), virus diffuses through the periciliary fluid (PCF) bathing the epithelium. But virus also undergoes advection: as the mucus layer sitting atop the PCF is pushed along by the ciliated cell's beating cilia, the PCF and its virus content are also pushed along, upwards towards the nose and mouth. While many mathematical models (MMs) have described the course of influenza A virus (IAV) infections in vivo, none have considered the impact of both diffusion and advection on the kinetics and localization of the infection. The MM herein represents the HRT as a one-dimensional track extending from the nose down towards the lower HRT, wherein stationary cells interact with IAV which moves within (diffusion) and along with (advection) the PCF. Diffusion was found to be negligible in the presence of advection which effectively sweeps away IAV, preventing infection from disseminating below the depth at which virus first deposits. Higher virus production rates (10-fold) are required at higher advection speeds (40 µm/s) to maintain equivalent infection severity and timing. Because virus is entrained upwards, upper parts of the HRT see more virus than lower parts. As such, infection peaks and resolves faster in the upper than in the lower HRT, making it appear as though infection progresses from the upper towards the lower HRT, as reported in mice. When the spatial MM is expanded to include cellular regeneration and an immune response, it reproduces tissue damage levels reported in patients. It also captures the kinetics of seasonal and avian IAV infections, via parameter changes consistent with reported differences between these strains, enabling comparison of their treatment with antivirals. This new MM offers a convenient and unique platform from which to study the localization and spread of respiratory viral infections within the HRT.


Assuntos
Influenza Humana/epidemiologia , Influenza Humana/metabolismo , Sistema Respiratório/virologia , Humanos , Vírus da Influenza A/patogenicidade , Influenza Humana/virologia , Modelos Teóricos , Infecções por Orthomyxoviridae/virologia , Replicação Viral
12.
PLoS One ; 14(4): e0214708, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30986239

RESUMO

Many aspects of the respiratory syncytial virus (RSV) are still poorly understood. Yet these knowledge gaps have had and could continue to have adverse, unintended consequences for the efficacy and safety of antivirals and vaccines developed against RSV. Mathematical modelling was used to test and evaluate hypotheses about the rate of loss of RSV infectivity and the mechanisms and kinetics of RSV infection spread in SIAT cells in vitro. While the rate of loss of RSV integrity, as measured via qRT-PCR, is well-described by an exponential decay, the latter mechanism failed to describe the rate at which RSV A Long loses infectivity over time in vitro based on the data presented herein. This is unusual given that other viruses (HIV, HCV, influenza) have been shown to lose their infectivity exponentially in vitro, and indeed an exponential rate of loss of infectivity is always assumed in mathematical modelling and experimental analyses. The infectivity profile of RSV in HEp-2 and SIAT cells remained consistent over the course of an RSV infection, over time and a large range of infectivity. However, SIAT cells were found to be ∼ 100× less sensitive to RSV infection than HEp-2 cells. In particular, we found that RSV spreads inefficiently in SIAT cells, in a manner we show is consistent with the establishment of infection resistance in uninfected cells. SIAT cells are a good in vitro model in which to study RSV in vivo dissemination, yielding similar infection timescales. However, the higher sensitivity of HEp-2 cells to RSV together with its RSV infectivity profile being similar to that of SIAT cells, makes HEp-2 cells more suitable for quantifying RSV infectivity over the course of in vitro RSV infections in SIAT cells. Our findings highlight the importance and urgency of resolving the mechanisms at play in the dissemination of RSV infections in vitro, and the processes by which this infectivity is lost.


Assuntos
Modelos Teóricos , Vírus Sincicial Respiratório Humano/fisiologia , Linhagem Celular , Humanos , Vírus da Influenza A/fisiologia , Cinética , RNA Viral/análise , Reação em Cadeia da Polimerase em Tempo Real , Vírus Sincicial Respiratório Humano/genética
13.
Ergonomics ; 61(7): 891-901, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29320970

RESUMO

This study's objective was to develop models of endurance time (ET), as a function of load level (LL), and of resumption time (RT) after loading as a function of both LL and loading time (LT) for repeated loadings. Ten male participants with experience in construction work each performed 15 different one-handed repetaed pushing tasks at shoulder height with varied exerted force and duration. These data were used to create regression models predicting ET and RT. It is concluded that power law relationships are most appropriate to use when modelling ET and RT. While the data the equations are based on are limited regarding number of participants, gender, postures, magnitude and type of exerted force, the paper suggests how this kind of modelling can be used in job design and in further research. Practitioner Summary: Adequate muscular recovery during work-shifts is important to create sustainable jobs. This paper describes mathematical modelling and presents models for endurance times and resumption times (an aspect of recovery need), based on data from an empirical study. The models can be used to help manage fatigue levels in job design.


Assuntos
Modelos Estatísticos , Fadiga Muscular/fisiologia , Resistência Física/fisiologia , Esforço Físico/fisiologia , Trabalho/fisiologia , Adulto , Indústria da Construção , Mãos , Humanos , Masculino , Descanso , Fatores de Tempo , Torção Mecânica , Carga de Trabalho
14.
PLoS One ; 12(8): e0183621, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28837615

RESUMO

Mathematical models (MMs) have been used to study the kinetics of influenza A virus infections under antiviral therapy, and to characterize the efficacy of antivirals such as neuraminidase inhibitors (NAIs). NAIs prevent viral neuraminidase from cleaving sialic acid receptors that bind virus progeny to the surface of infected cells, thereby inhibiting their release, suppressing infection spread. When used to study treatment with NAIs, MMs represent viral release implicitly as part of viral replication. Consequently, NAIs in such MMs do not act specifically and exclusively on virus release. We compared a MM with an explicit representation of viral release (i.e., distinct from virus production) to a simple MM without explicit release, and investigated whether parameter estimation and the estimation of NAI efficacy were affected by the use of a simple MM. Since the release rate of influenza A virus is not well-known, a broad range of release rates were considered. If the virus release rate is greater than ∼0.1 h-1, the simple MM provides accurate estimates of infection parameters, but underestimates NAI efficacy, which could lead to underdosing and the emergence of NAI resistance. In contrast, when release is slower than ∼0.1 h-1, the simple MM accurately estimates NAI efficacy, but it can significantly overestimate the infectious lifespan (i.e., the time a cell remains infectious and producing free virus), and it will significantly underestimate the total virus yield and thus the likelihood of resistance emergence. We discuss the properties of, and a possible lower bound for, the influenza A virus release rate.


Assuntos
Antivirais/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Vírus da Influenza A/isolamento & purificação , Influenza Humana/transmissão , Neuraminidase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Humanos , Técnicas In Vitro , Influenza Humana/tratamento farmacológico
15.
PLoS One ; 12(7): e0180582, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28700622

RESUMO

The emergence of influenza drug resistance has become of particular interest as current planning for an influenza pandemic involves using massive amounts of antiviral drugs. We use semi-stochastic simulations to examine the emergence of drug resistant mutants during the course of a single infection within a patient in the presence and absence of antiviral therapy. We specifically examine three factors and their effect on the emergence of drug-resistant mutants: antiviral mechanism, the immune response, and surface proteins. We find that adamantanes, because they act at the start of the replication cycle to prevent infection, are less likely to produce drug-resistant mutants than NAIs, which act at the end of the replication cycle. A mismatch between surface proteins and internal RNA results in drug-resistant mutants being less likely to emerge, and emerging later in the infection because the mismatch gives antivirals a second chance to prevent propagation of the mutation. The immune response subdues slow growing infections, further reducing the probability that a drug resistant mutant will emerge and yield a drug-resistant infection. These findings improve our understanding of the factors that contribute to the emergence of drug resistance during the course of a single influenza infection.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/imunologia , Influenza Humana/imunologia , Influenza Humana/virologia , Proteínas de Membrana/metabolismo , Modelos Teóricos , Antivirais/uso terapêutico , Aptidão Genética , Humanos , Influenza Humana/tratamento farmacológico , Mutação/genética , Resultado do Tratamento
16.
Sci Rep ; 7: 42765, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28202942

RESUMO

The duration of the eclipse phase, from cell infection to the production and release of the first virion progeny, immediately followed by the virus-production phase, from the first to the last virion progeny, are important steps in a viral infection, by setting the pace of infection progression and modulating the response to antiviral therapy. Using a mathematical model (MM) and data for the infection of HSC-F cells with SHIV in vitro, we reconfirm our earlier finding that the eclipse phase duration follows a fat-tailed distribution, lasting 19 h (18-20 h). Most importantly, for the first time, we show that the virus-producing phase duration, which lasts 11 h (9.8-12 h), follows a normal-like distribution, and not an exponential distribution as is typically assumed. We explore the significance of this finding and its impact on analysis of plasma viral load decays in HIV patients under antiviral therapy. We find that incorrect assumptions about the eclipse and virus-producing phase distributions can lead to an overestimation of antiviral efficacy. Additionally, our predictions for the rate of plasma HIV decay under integrase inhibitor therapy offer an opportunity to confirm whether HIV production duration in vivo also follows a normal distribution, as demonstrated here for SHIV infections in vitro.


Assuntos
Infecções por HIV/virologia , HIV/patogenicidade , Modelos Teóricos , Vírus da Imunodeficiência Símia/patogenicidade , Carga Viral , Animais , Linhagem Celular , HIV/fisiologia , Infecções por HIV/tratamento farmacológico , Humanos , Macaca fascicularis , Vírus da Imunodeficiência Símia/fisiologia , Replicação Viral
17.
Sci Rep ; 7: 40210, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28067324

RESUMO

Antiviral therapy is a first line of defence against new influenza strains. Current pandemic preparations involve stock- piling oseltamivir, an oral neuraminidase inhibitor (NAI), so rapidly determining the effectiveness of NAIs against new viral strains is vital for deciding how to use the stockpile. Previous studies have shown that it is possible to extract the drug efficacy of antivirals from the viral decay rate of chronic infections. In the present work, we use a nonlinear mathematical model representing the course of an influenza infection to explore the possibility of extracting NAI drug efficacy using only the observed viral titer decay rates seen in patients. We first show that the effect of a time-varying antiviral concentration can be accurately approximated by a constant efficacy. We derive a relationship relating the true treatment dose and time elapsed between doses to the constant drug dose required to approximate the time- varying dose. Unfortunately, even with the simplification of a constant drug efficacy, we show that the viral decay rate depends not just on drug efficacy, but also on several viral infection parameters, such as infection and production rate, so that it is not possible to extract drug efficacy from viral decay rate alone.


Assuntos
Antivirais/farmacologia , Influenza Humana/tratamento farmacológico , Neuraminidase/antagonistas & inibidores , Oseltamivir/farmacologia , Carga Viral/efeitos dos fármacos , Antivirais/uso terapêutico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Influenza Humana/diagnóstico , Modelos Biológicos , Modelos Teóricos , Oseltamivir/uso terapêutico , Resultado do Tratamento
18.
J R Soc Interface ; 13(124)2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27881801

RESUMO

A defective interfering particle (DIP) in the context of influenza A virus is a virion with a significantly shortened RNA segment substituting one of eight full-length parent RNA segments, such that it is preferentially amplified. Hence, a cell co-infected with DIPs will produce mainly DIPs, suppressing infectious virus yields and affecting infection kinetics. Unfortunately, the quantification of DIPs contained in a sample is difficult because they are indistinguishable from standard virus (STV). Using a mathematical model, we investigated the standard experimental method for counting DIPs based on the reduction in STV yield (Bellett & Cooper, 1959, Journal of General Microbiology 21, 498-509 (doi:10.1099/00221287-21-3-498)). We found the method is valid for counting DIPs provided that: (i) an STV-infected cell's co-infection window is approximately half its eclipse phase (it blocks infection by other virions before it begins producing progeny virions), (ii) a cell co-infected by STV and DIP produces less than 1 STV per 1000 DIPs and (iii) a high MOI of STV stock (more than 4 PFU per cell) is added to perform the assay. Prior work makes no mention of these criteria such that the method has been applied incorrectly in several publications discussed herein. We determined influenza A virus meets these criteria, making the method suitable for counting influenza A DIPs.


Assuntos
Vírus Defeituosos/fisiologia , Vírus da Influenza A/fisiologia , Modelos Biológicos , Vírion/fisiologia , Humanos
19.
Sci Rep ; 6: 24154, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27080193

RESUMO

Avian influenza viruses present an emerging epidemiological concern as some strains of H5N1 avian influenza can cause severe infections in humans with lethality rates of up to 60%. These have been in circulation since 1997 and recently a novel H7N9-subtyped virus has been causing epizootics in China with lethality rates around 20%. To better understand the replication kinetics of these viruses, we combined several extensive viral kinetics experiments with mathematical modelling of in vitro infections in human A549 cells. We extracted fundamental replication parameters revealing that, while both the H5N1 and H7N9 viruses replicate faster and to higher titers than two low-pathogenicity H1N1 strains, they accomplish this via different mechanisms. While the H7N9 virions exhibit a faster rate of infection, the H5N1 virions are produced at a higher rate. Of the two H1N1 strains studied, the 2009 pandemic H1N1 strain exhibits the longest eclipse phase, possibly indicative of a less effective neuraminidase activity, but causes infection more rapidly than the seasonal strain. This explains, in part, the pandemic strain's generally slower growth kinetics and permissiveness to accept mutations causing neuraminidase inhibitor resistance without significant loss in fitness. Our results highlight differential growth properties of H1N1, H5N1 and H7N9 influenza viruses.


Assuntos
Vírus da Influenza A/fisiologia , Influenza Humana/virologia , Replicação Viral , Animais , Humanos , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A/patogenicidade , Modelos Teóricos , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...