Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biotechnol J ; 19(1): e2300232, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37975165

RESUMO

Chlamydomonas reinhardtii has been successfully engineered to produce compounds of interest following transgene integration and heterologous protein expression. The advantages of this model include the availability of validated tools for bioengineering, its photosynthetic ability, and its potential use as biofuel. Despite this, breakthroughs have been hindered by its ability to silence transgene expression through epigenetic changes. Histone deacetylases (HDAC) are main players in gene expression. We hypothesized that transgene silencing can be reverted with chemical treatments using HDAC inhibitors. To analyze this, we transformed C. reinhardtii, integrating into its genome the mVenus reporter gene under the HSP70-rbcs2 promoter. From 384 transformed clones, 88 (22.9%) displayed mVenus positive (mVenus+ ) cells upon flow-cytometry analysis. Five clones with different fluorescence intensities were selected. The number of integrated copies was measured by qPCR. Transgene expression levels were followed over the growth cycle and upon SAHA treatment, using a microplate reader, flow cytometry, RT-qPCR, and western blot analysis. First, we observed that expression varies with the cell cycle, reaching a maximum level just before the stationary phase in all clones. Second, we uncovered that supplementation with HDAC inhibitors of the hydroxamate family, such as vorinostat (suberoylanilide-hydroxamic-acid, SAHA) at the initiation of culture increases the frequency (% of mVenus+ cells) and the level of transgene expression per cell over the whole growth cycle, through histone deacetylase inhibition. Thus, we propose a new tool to successfully trigger the expression of heterologous proteins in the green algae C. reinhardtii, overcoming its main obstacle as an expression platform.


Assuntos
Chlamydomonas reinhardtii , Inibidores de Histona Desacetilases , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Vorinostat , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/química , Histona Desacetilases/metabolismo , Transgenes/genética
2.
Life (Basel) ; 10(9)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927613

RESUMO

Microalgae biotechnologies are rapidly developing into new commercial settings. Several high value products already exist on the market, and biotechnological development is focused on genetic engineering of microalgae to open up future economic opportunities for food, fuel and pharmacological production. Colony-polymerase chain reaction (colony-PCR or cPCR) is a critical method for screening genetically transformed microalgae cells. However, the ability to rapidly screen thousands of transformants using the current colony-PCR method, becomes a very laborious and time-consuming process. Herein, the non-homologous transformation of Chlamydomonas reinhardtii using the electroporation and glass beads methods generated more than seven thousand transformants. In order to manage this impressive number of clones efficiently, we developed a high-throughput screening (HTS) cPCR method to rapidly maximize the detection and selection of positively transformed clones. For this, we optimized the Chlamydomonas transformed cell layout on the culture media to improve genomic DNA extraction and cPCR in 96-well plate. The application of this optimized HTS cPCR method offers a rapid, less expensive and reliable method for the detection and selection of microalgae transformants. Our method, which saves up to 80% of the experimental time, holds promise for evaluating genetically transformed cells and selection for microalgae-based biotechnological applications such as synthetic biology and metabolic engineering.

3.
Biochim Biophys Acta ; 1767(7): 905-12, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17511958

RESUMO

Polyamines are implicated in plant growth and stress response. However, the polyamines spermine and spermidine were shown to elicit strong inhibitory effects in photosystem II (PSII) submembrane fractions. We have studied the mechanism of this inhibitory action in detail. The inhibition of electron transport in PSII submembrane fractions treated with millimolar concentrations of spermine or spermidine led to the decline of plastoquinone reduction, which was reversed by the artificial electron donor diphenylcarbazide. The above inhibition was due to the loss of the extrinsic polypeptides associated with the oxygen evolving complex. Thermoluminescence measurements revealed that charge recombination between the quinone acceptors of PSII, QA and QB, and the S2 state of the Mn-cluster was abolished. Also, the dark decay of chlorophyll fluorescence after a single turn-over white flash was greatly retarded indicating a slower rate of QA- reoxidation.


Assuntos
Oxigênio/química , Complexo de Proteína do Fotossistema II/antagonistas & inibidores , Quinonas/química , Espermidina/farmacologia , Espermina/farmacologia , Clorofila/química , Transporte de Elétrons , Elétrons , Fluorescência , Manganês/química , Oxirredução , Peptídeos/química , Complexo de Proteína do Fotossistema II/química , Espermidina/química , Espermina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA