Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasitology ; 141(1): 104-18, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24007596

RESUMO

SUMMARY This review presents a progression strategy for the discovery of new anti-parasitic drugs that uses in vitro susceptibility, time-kill and reversibility measures to define the therapeutically relevant exposure required in target tissues of animal infection models. The strategy is exemplified by the discovery of SCYX-7158 as a potential oral treatment for stage 2 (CNS) Human African Trypanosomiasis (HAT). A critique of current treatments for stage 2 HAT is included to provide context for the challenges of achieving target tissue disposition and the need for establishing pharmacokinetic-pharmacodynamic (PK-PD) measures early in the discovery paradigm. The strategy comprises 3 stages. Initially, compounds demonstrating promising in vitro activity and selectivity for the target organism over mammalian cells are advanced to in vitro metabolic stability, barrier permeability and tissue binding assays to establish that they will likely achieve and maintain therapeutic concentrations during in-life efficacy studies. Secondly, in vitro time-kill and reversibility kinetics are employed to correlate exposure (based on unbound concentrations) with in vitro activity, and to identify pharmacodynamic measures that would best predict efficacy. Lastly, this information is used to design dosing regimens for pivotal pharmacokinetic-pharmacodyamic studies in animal infection models.


Assuntos
Benzamidas/farmacocinética , Compostos de Boro/farmacocinética , Tripanossomicidas/farmacocinética , Trypanosoma brucei gambiense/efeitos dos fármacos , Trypanosoma brucei rhodesiense/efeitos dos fármacos , Tripanossomíase Africana/tratamento farmacológico , Administração Oral , Animais , Área Sob a Curva , Benzamidas/administração & dosagem , Benzamidas/sangue , Bioensaio , Barreira Hematoencefálica/efeitos dos fármacos , Compostos de Boro/administração & dosagem , Compostos de Boro/sangue , Permeabilidade Capilar , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Concentração Inibidora 50 , Tripanossomicidas/administração & dosagem , Tripanossomicidas/sangue , Trypanosoma brucei gambiense/crescimento & desenvolvimento , Trypanosoma brucei rhodesiense/crescimento & desenvolvimento , Tripanossomíase Africana/sangue , Tripanossomíase Africana/parasitologia
2.
PLoS Negl Trop Dis ; 5(6): e1151, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21738803

RESUMO

BACKGROUND: Human African trypanosomiasis (HAT) is an important public health problem in sub-Saharan Africa, affecting hundreds of thousands of individuals. An urgent need exists for the discovery and development of new, safe, and effective drugs to treat HAT, as existing therapies suffer from poor safety profiles, difficult treatment regimens, limited effectiveness, and a high cost of goods. We have discovered and optimized a novel class of small-molecule boron-containing compounds, benzoxaboroles, to identify SCYX-7158 as an effective, safe and orally active treatment for HAT. METHODOLOGY/PRINCIPAL FINDINGS: A drug discovery project employing integrated biological screening, medicinal chemistry and pharmacokinetic characterization identified SCYX-7158 as an optimized analog, as it is active in vitro against relevant strains of Trypanosoma brucei, including T. b. rhodesiense and T. b. gambiense, is efficacious in both stage 1 and stage 2 murine HAT models and has physicochemical and in vitro absorption, distribution, metabolism, elimination and toxicology (ADMET) properties consistent with the compound being orally available, metabolically stable and CNS permeable. In a murine stage 2 study, SCYX-7158 is effective orally at doses as low as 12.5 mg/kg (QD×7 days). In vivo pharmacokinetic characterization of SCYX-7158 demonstrates that the compound is highly bioavailable in rodents and non-human primates, has low intravenous plasma clearance and has a 24-h elimination half-life and a volume of distribution that indicate good tissue distribution. Most importantly, in rodents brain exposure of SCYX-7158 is high, with C(max) >10 µg/mL and AUC(0-24 hr) >100 µg*h/mL following a 25 mg/kg oral dose. Furthermore, SCYX-7158 readily distributes into cerebrospinal fluid to achieve therapeutically relevant concentrations in this compartment. CONCLUSIONS/SIGNIFICANCE: The biological and pharmacokinetic properties of SCYX-7158 suggest that this compound will be efficacious and safe to treat stage 2 HAT. SCYX-7158 has been selected to enter preclinical studies, with expected progression to phase 1 clinical trials in 2011.


Assuntos
Antiprotozoários/administração & dosagem , Antiprotozoários/farmacocinética , Benzamidas/administração & dosagem , Benzamidas/farmacocinética , Compostos de Boro/administração & dosagem , Compostos de Boro/farmacocinética , Tripanossomíase Africana/tratamento farmacológico , Administração Oral , Animais , Antiprotozoários/efeitos adversos , Benzamidas/efeitos adversos , Compostos de Boro/efeitos adversos , Modelos Animais de Doenças , Feminino , Camundongos , Testes de Sensibilidade Parasitária , Doenças dos Primatas/tratamento farmacológico , Primatas , Doenças dos Roedores/tratamento farmacológico , Resultado do Tratamento , Trypanosoma/efeitos dos fármacos
3.
Antimicrob Agents Chemother ; 54(10): 4379-88, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20660666

RESUMO

We report the discovery of novel boron-containing molecules, exemplified by N-(1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-6-yl)-2-trifluoromethylbenzamide (AN3520) and 4-fluoro-N-(1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-6-yl)-2-trifluoromethylbenzamide (SCYX-6759), as potent compounds against Trypanosoma brucei in vitro, including the two subspecies responsible for human disease T. b. rhodesiense and T. b. gambiense. These oxaborole carboxamides cured stage 1 (hemolymphatic) trypanosomiasis infection in mice when administered orally at 2.5 to 10 mg/kg of body weight for 4 consecutive days. In stage 2 disease (central nervous system [CNS] involvement), mice infected with T. b. brucei were cured when AN3520 or SCYX-6759 were administered intraperitoneally or orally (50 mg/kg) twice daily for 7 days. Oxaborole-treated animals did not exhibit gross signs of compound-related acute or subchronic toxicity. Metabolism and pharmacokinetic studies in several species, including nonhuman primates, demonstrate that both SCYX-6759 and AN3520 are low-clearance compounds. Both compounds were well absorbed following oral dosing in multiple species and also demonstrated the ability to cross the blood-brain barrier with no evidence of interaction with the P-glycoprotein transporter. Overall, SCYX-6759 demonstrated superior pharmacokinetics, and this was reflected in better efficacy against stage 2 disease in the mouse model. On the whole, oxaboroles demonstrate potent activity against all T. brucei subspecies, excellent physicochemical profiles, in vitro metabolic stability, a low potential for CYP450 inhibition, a lack of active efflux by the P-glycoprotein transporter, and high permeability. These properties strongly suggest that these novel chemical entities are suitable leads for the development of new and effective orally administered treatments for human African trypanosomiasis.


Assuntos
Imidazóis/uso terapêutico , Tripanossomicidas/uso terapêutico , Trypanosoma brucei brucei/patogenicidade , Tripanossomíase Africana/tratamento farmacológico , Animais , Feminino , Humanos , Imidazóis/química , Macaca fascicularis , Masculino , Camundongos , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Trypanosoma brucei brucei/efeitos dos fármacos
4.
Pharm Res ; 24(6): 1138-44, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17373577

RESUMO

PURPOSE: A series of melanocortin-4 receptor (MC4R) agonists, developed for use as anti-obesity agents, were found to have unusual pharmacokinetic behavior arising from excessive retention in the liver, with nearly undetectable levels in plasma following oral administration in mice. This work investigates the molecular basis of the prolonged liver retention that provided a rational basis for the design of an analog with improved behavior. MATERIALS AND METHODS: The livers of mice were harvested and techniques were utilized to fractionate them into pools differentially enriched in organelles. The distribution of organelles in the fractions was determined using organelle-specific enzymatic assays. Livers from mice dosed with drug were fractionated and comparisons with organelle distributions assisted in determining the subcellular localization of the drug. Further analysis in cell culture systems was used to confirm results from liver fractionation studies and also allowed for more extensive evaluations to examine the mechanism for organelle compartmentalization RESULTS: Fractionation of livers following oral administration of the agonist showed sequestration in lysosomes. Subsequent evaluations in a cell culture system confirmed this finding. Agents used to disrupt acidification of lysosomes led to decreased lysosomal accumulation of the drug, which implicated a pH-partitioning type sequestration mechanism. These findings led to the rational synthesis of an analog of the parent compound with properties that reduced lysosomal sequestration. When this compound was examined in mice, the liver retention was found to be greatly reduced and plasma levels were significantly elevated relative to the parent compound. CONCLUSIONS: Weakly basic drugs with optimal physicochemical properties can be extensively sequestered into lysosomes according to a pH-partitioning type mechanism. When administered orally in animals, this particular sequestration event can manifest itself in long term retention in the liver and negligible levels in blood. This work revealed the mechanism for liver retention and provided a rational platform for the design of a new analog with decreased liver accumulation and better opportunity for pharmacokinetic analysis and therapeutic activity.


Assuntos
Lisossomos/fisiologia , Farmacocinética , Receptor Tipo 4 de Melanocortina/agonistas , Animais , Fígado/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...