Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Robot Surg ; 17(6): 2749-2756, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37707742

RESUMO

Robotic navigation has been shown to increase precision, accuracy, and safety during spinal reconstructive procedures. There is a paucity of literature describing the best techniques for robotic-assisted spine surgery for complex, multilevel cases or in cases of significant deformity correction. We present a case series of 100 consecutive multilevel posterior spinal fusion procedures performed for multilevel spinal disease and/or deformity correction. 100 consecutive posterior spinal fusions were performed for multilevel disease and/or deformity correction utilizing robotic-assisted placement of pedicle screws. The primary outcome was surgery-related failure, which was defined as hardware breakage or reoperation with removal of hardware. A total of 100 consecutive patients met inclusion criteria. Among cases included, 31 were revision surgeries with existing hardware in place. The mean number of levels fused was 5.6, the mean operative time was 303 min, and the mean estimated blood loss was 469 mL. 28 cases included robotic-assisted placement of S2 alar-iliac (S2AI) screws. In total, 1043 pedicle screws and 53 S2AI screws were placed with robotic-assistance. The failure rate using survivorship analysis was 18/1043 (1.7%) and the failure rate of S2AI screws using survivorship analysis was 3/53 (5.7%). Four patients developed postoperative wound infections requiring irrigation and debridement procedures. None of the 1043 pedicle screws nor the 53 S2AI screws required reoperation due to malpositioning or suboptimal placement. This case series of 100 multilevel posterior spinal fusion procedures demonstrates promising results with low failure rates. With 1043 pedicle screws and 53 S2AI screws, we report low failure rates of 1.7% and 5.7%, respectively with zero cases of screw malpositioning. Robotic screw placement allows for accurate screw placement with no increased rate of postoperative infection compared to historical controls. Level of evidence: IV, Retrospective review.


Assuntos
Parafusos Pediculares , Procedimentos Cirúrgicos Robóticos , Robótica , Fusão Vertebral , Humanos , Procedimentos Cirúrgicos Robóticos/métodos , Fusão Vertebral/métodos , Coluna Vertebral , Estudos Retrospectivos
2.
Neurosurg Rev ; 46(1): 20, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36536143

RESUMO

Technological advancements in optoelectronic motion capture systems have allowed for the development of high-precision computer-assisted surgery (CAS) used in cranial and spinal surgical procedures. Errors generated sequentially throughout the chain of components of CAS may have cumulative effect on the accuracy of implant and instrumentation placement - potentially affecting patient outcomes. Navigational integrity and maintenance of fidelity of optoelectronic data is the cornerstone of CAS. Error reporting measures vary between studies. Understanding error generation, mechanisms of propagation, and how they relate to workflow can assist clinicians in error mitigation and improve accuracy during navigation in neurosurgical procedures. Diligence in planning, fiducial positioning, system registration, and intra-operative workflow have the potential to improve accuracy and decrease disparity between planned and final instrumentation and implant position. This study reviews the potential errors associated with each step in computer-assisted surgery and provides a basis for disparity in intrinsic accuracy versus achieved accuracy in the clinical operative environment.


Assuntos
Cirurgia Assistida por Computador , Humanos , Cirurgia Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Procedimentos Neurocirúrgicos/métodos , Crânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...