Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drugs Context ; 122023.
Artigo em Inglês | MEDLINE | ID: mdl-37908642

RESUMO

Background: Escherichia coli is the predominant non-pathogenic facultative microbe of the human intestine, although some strains are diarrhoeagenic in humans. E. coli-derived lipopolysaccharide (LPS) induces diarrhoea, intestinal barrier impairment, bacterial translocation and intestinal inflammation. Associations with the mucoprotectant xyloglucan exhibit antidiarrhoeal effects. This study evaluated and compared the effects of xyloglucan in combination with gelatin or gelose (agar-agar) on jejunal permeability and inflammation using an in vivo rat model of E. coli LPS-induced enteritis. Methods: Xyloglucan (12.5 mg/kg) plus gelatin (250 mg/kg) or gelose (250 or 500 mg/kg) were administered orally 2 hours before intraperitoneal injection with E. coli LPS. Following euthanasia, jejunal segments were removed for intestinal permeability measurement in Ussing chambers and inflammatory tone evaluation by myeloperoxidase activity assay. Results: LPS administration increased jejunal permeability and increased mucosal inflammation in male Wistar rats. Xyloglucan plus gelatin 250 mg/kg and xyloglucan plus gelose 500 mg/kg significantly attenuated LPS-induced jejunal hyperpermeability and myeloperoxidase activity. Conclusion: Xyloglucan, a known mucosal barrier protector, in combination with gelatin or gelose, has beneficial and comparable effects on intestinal permeability and inflammation following E. coli LPS insult in male rats.

2.
FASEB J ; 37(11): e23264, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37850915

RESUMO

Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder characterized by its main symptom, visceral hypersensitivity (VH), which is aggravated by stress. Gut-brain interactions and gut bacteria may alleviate IBS symptoms, including VH. γ-amino butyric acid (GABA), produced notably by lactic acid bacteria (LAB), shows promising result in IBS symptoms treatment. In bacteria, GABA is generated through glutamate decarboxylase (GAD) metabolism of L-glutamic acid, maintaining intracellular pH. In mammals, GABA acts as an inhibitory neurotransmitter, modulating pain, stress, and anxiety. Therefore, utilizing GABA-producing LAB as a therapeutic approach might be beneficial. Our previous work showed that a GABA-producing Lactococcus lactis strain, NCDO2118, reduced VH induced by acute stress in rats after a 10-day oral treatment. Here, we identified the strain CNCM I-5388, with a four-fold higher GABA production rate under the same conditions as NCDO2118. Both strains shared 99.1% identical GAD amino acid sequences and in vitro analyses revealed the same optimal pH for GAD activity; however, CNCM I-5388 exhibited 17 times higher intracellular GAD activity and increased resistance to acidic pH. Additionally, in vivo experiments have demonstrated that CNCM I-5388 has faster anti-VH properties in rats compared with NCDO2118, starting from the fifth day of treatment. Finally, CNCM I-5388 anti-VH effects partially persisted after 5-day treatment interruption and after a single oral treatment. These findings highlight CNCM I-5388 as a potential therapeutic agent for managing VH in IBS patients.


Assuntos
Síndrome do Intestino Irritável , Lactobacillales , Lactococcus lactis , Humanos , Ratos , Animais , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Ácido gama-Aminobutírico/metabolismo , Sequência de Aminoácidos , Mamíferos
3.
Elife ; 112022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35727704

RESUMO

Gut disorders associated to irritable bowel syndrome (IBS) are combined with anxiety and depression. Evidence suggests that microbially produced neuroactive molecules, like γ-aminobutyric acid (GABA), can modulate the gut-brain axis. Two natural strains of Lactococcus lactis and one mutant were characterized in vitro for their GABA production and tested in vivo in rat by oral gavage for their antinociceptive properties. L. lactis NCDO2118 significantly reduced visceral hypersensitivity induced by stress due to its glutamate decarboxylase (GAD) activity. L. lactis NCDO2727 with similar genes for GABA metabolism but no detectable GAD activity had no in vivo effect, as well as the NCDO2118 ΔgadB mutant. The antinociceptive effect observed for the NCDO2118 strain was mediated by the production of GABA in the gastro-intestinal tract and blocked by GABAB receptor antagonist. Only minor changes in the faecal microbiota composition were observed after the L. lactis NCDO2118 treatment. These findings reveal the crucial role of the microbial GAD activity of L. lactis NCDO2118 to deliver GABA into the gastro-intestinal tract for exerting antinociceptive properties in vivo and open avenues for this GRAS (Generally Recognized As safe) bacterium in the management of visceral pain and anxious profile of IBS patients.


Assuntos
Síndrome do Intestino Irritável , Lactococcus lactis , Dor Visceral , Analgésicos/metabolismo , Analgésicos/farmacologia , Animais , Humanos , Síndrome do Intestino Irritável/complicações , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Ratos , Dor Visceral/complicações , Ácido gama-Aminobutírico/metabolismo
4.
Neurogastroenterol Motil ; 32(5): e13798, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32059072

RESUMO

BACKGROUND: Irritable bowel syndrome (IBS) is a common disorder worldwide. It is characterized by abdominal pain/discomfort and changes in bowel habits. Due to the multifactorial pathophysiology and the heterogeneity of IBS patients, appropriate treatment of IBS is still a challenge. Spascupreel (SP-11), as a multicomponent medication, has the potential to modulate multiple pathophysiological pathways simultaneously. Therefore, the objective of the current study was to investigate the effects of oral SP-11 treatment on stress-induced changes of peripheral and central functions in a rat model mimicking human IBS. METHODS: Naïve Wistar rats were treated with SP-11 (0.9 tab/kg) or NaCl 0.9% by oral gavage for 4 days before 2-hour partial restraint stress (PRS) procedure. Twenty minutes after PRS, central and peripheral stress-induced changes affecting IBS were assessed. These include the hypothalamic-pituitary-adrenal (HPA) axis response through plasma ACTH and corticosterone measurements, visceral pain in response to colorectal distension, gut permeability, colonic mast cell number, and sensitization as well as gut transit time. RESULTS: Treatment with SP-11 reduced the HPA axis activation in response to PRS. At the gut level, a reduction in colonic hypersensitivity to colorectal distension, a normalization of gut transit time acceleration, a reduced mast cell sensitization, and a trend toward reduced gut hyperpermeability were observed. CONCLUSIONS: These data suggest that stress-induced IBS signs can be reduced using SP-11 in rats. The observed effects and the good tolerability of the drug make SP-11 an innovative candidate in the management of IBS.


Assuntos
Síndrome do Intestino Irritável/prevenção & controle , Síndrome do Intestino Irritável/fisiopatologia , Estresse Psicológico/complicações , Hormônio Adrenocorticotrópico/sangue , Animais , Modelos Animais de Doenças , Feminino , Motilidade Gastrointestinal/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Síndrome do Intestino Irritável/sangue , Mastócitos/efeitos dos fármacos , Ratos Wistar , Estresse Psicológico/sangue
5.
World J Gastroenterol ; 24(17): 1888-1900, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29740204

RESUMO

AIM: To investigate the effects of plecanatide and dolcanatide on maintenance of paracellular permeability, integrity of tight junctions and on suppression of visceral hypersensitivity. METHODS: Transport of fluorescein isothiocyanate (FITC)-dextran was measured to assess permeability across cell monolayers and rat colon tissues. Effects of plecanatide and dolcanatide on the integrity of tight junctions in Caco-2 and T84 monolayers and on the expression and localization of occludin and zonula occludens-1 (ZO-1) were examined by immunofluorescence microscopy. Anti-nociceptive activity of these agonists was evaluated in trinitrobenzene sulfonic acid (TNBS)-induced inflammatory as well as in non-inflammatory partial restraint stress (PRS) rat models. Statistical significance between the treatment groups in the permeability studies were evaluated using unpaired t-tests. RESULTS: Treatment of T84 and Caco-2 monolayers with lipopolysaccharide (LPS) rapidly increased permeability, which was effectively suppressed when monolayers were also treated with plecanatide or dolcanatide. Similarly, when T84 and Caco-2 monolayers were treated with LPS, cell surface localization of tight junction proteins occludin and ZO-1 was severely disrupted. When cell monolayers were treated with LPS in the presence of plecanatide or dolcanatide, occludin and ZO-1 were localized at the cell surface of adjoining cells, similar to that observed for vehicle treated cells. Treatment of cell monolayers with plecanatide or dolcanatide without LPS did not alter permeability, integrity of tight junctions and cell surface localization of either of the tight junction proteins. In rat visceral hypersensitivity models, both agonists suppressed the TNBS-induced increase in abdominal contractions in response to colorectal distension without affecting the colonic wall elasticity, and both agonists also reduced colonic hypersensitivity in the PRS model. CONCLUSION: Our results suggest that activation of GC-C signaling might be involved in maintenance of barrier function, possibly through regulating normal localization of tight junction proteins. Consistent with these findings, plecanatide and dolcanatide showed potent anti-nociceptive activity in rat visceral hypersensitivity models. These results imply that activation of GC-C signaling may be an attractive therapeutic approach to treat functional constipation disorders and inflammatory gastrointestinal conditions.


Assuntos
Constipação Intestinal/tratamento farmacológico , Agonistas da Guanilil Ciclase C/farmacologia , Síndrome do Intestino Irritável/tratamento farmacológico , Receptores de Enterotoxina/metabolismo , Dor Visceral/tratamento farmacológico , Administração Oral , Animais , Células CACO-2 , Colo/citologia , Colo/efeitos dos fármacos , Colo/patologia , Constipação Intestinal/patologia , Dextranos/farmacocinética , Feminino , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/farmacocinética , Agonistas da Guanilil Ciclase C/uso terapêutico , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Síndrome do Intestino Irritável/etiologia , Síndrome do Intestino Irritável/patologia , Lipopolissacarídeos/farmacologia , Masculino , Peptídeos Natriuréticos/farmacologia , Peptídeos Natriuréticos/uso terapêutico , Nociceptividade/efeitos dos fármacos , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Permeabilidade/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Ácido Trinitrobenzenossulfônico/toxicidade , Dor Visceral/induzido quimicamente , Dor Visceral/patologia
6.
Expert Rev Gastroenterol Hepatol ; 12(1): 83-90, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28946778

RESUMO

INTRODUCTION: The intestinal barrier controls the absorption of nutrients and water whilst helping to prevent the entry of toxins and pathogenic micro-organisms from the lumen into the tissues. Deficiencies in the barrier are associated with various gastrointestinal and extra digestive disorders. Areas covered: This review provides an overview of the relationship between increased intestinal permeability and disease, and considers the role of mucosal protectants (mucoprotectants) in restoring normal intestinal barrier function, with a particular focus on diarrheal disorders. Expert commentary: Impairment of the intestinal barrier characterizes a variety of diseases, and there is ongoing interest in the development of pharmacological approaches targeting the reduction of intestinal permeability. These include corticosteroids, aminosalicylates and anti-tumor necrosis factor-α (TNF-α), which act by reducing inflammation; probiotics, which modulate the production of mucin and epithelial tight junction proteins; and mucoprotectants, which form a protective film over the epithelium. Recently, preclinical and clinical data highlight, the ability of new mucoprotectants, such as gelatin tannate and xyloglucan, to protect the intestinal mucosa and to exert anti-diarrheal effects. In the future the ability of these substances to enhance the intestinal barrier may extend their use in the management of a variety of gastro-intestinal diseases associated with 'leaky gut'.


Assuntos
Demulcentes/uso terapêutico , Diarreia/tratamento farmacológico , Gelatina/uso terapêutico , Glucanos/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Taninos/uso terapêutico , Xilanos/uso terapêutico , Demulcentes/efeitos adversos , Diarreia/diagnóstico , Diarreia/metabolismo , Diarreia/fisiopatologia , Gelatina/efeitos adversos , Glucanos/efeitos adversos , Humanos , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/fisiopatologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Mucosa Intestinal/fisiopatologia , Permeabilidade , Taninos/efeitos adversos , Resultado do Tratamento , Xilanos/efeitos adversos
7.
J Pharm Pharmacol ; 65(4): 567-73, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23488786

RESUMO

OBJECTIVES: Alverine, an antispasmodic agent for the treatment of irritable bowel syndrome (IBS), may be combined with simethicone, a protective agent of the mucosa. Stress is a major factor triggering abdominal pain in IBS and causing hypersensitivity to colonic distension in animals through an increased colonic permeability. The antinociceptive effects of alverine and simethicone, separately or in association, were evaluated on stress-induced colonic hypersensitivity to distension in rats. The influence of simethicone on altered permeability was also tested. METHODS: Groups of 8-10 female adult Wistar rats (200-250 g) housed individually were used. Gut paracellular permeability was evaluated after 2 h of partial restraint stress using oral gavage with 5¹Cr-EDTA and 24 h of urine collection. The number of abdominal cramps during colonic distension was evaluated in animals equipped with electrodes on their abdominal striated muscles. KEY FINDINGS: At 200 mg/kg p.o. twice a day, but not at lower doses, simethicone reduced stress-induced increase of colonic permeability and hypersensitivity to distension. Administered alone at 10 mg/kg p.o., alverine also reduced stress-induced hypersensitivity to distension; lower doses were inactive. However, alverine administered at an inactive dose with simethicone suppressed stress-induced hypersensitivity to distension. CONCLUSIONS: We conclude that both simethicone and alverine have visceral antinociceptive effects by two different mechanisms and that simethicone exerts a potentiating effect on the antinociceptive action of alverine.


Assuntos
Cólica/prevenção & controle , Modelos Animais de Doenças , Fármacos Gastrointestinais/uso terapêutico , Mucosa Intestinal/efeitos dos fármacos , Propilaminas/uso terapêutico , Substâncias Protetoras/uso terapêutico , Simeticone/uso terapêutico , Animais , Antiespumantes/uso terapêutico , Cólica/etiologia , Colo/efeitos dos fármacos , Colo/metabolismo , Dilatação Patológica/fisiopatologia , Resistência à Doença/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Fármacos Gastrointestinais/agonistas , Mucosa Intestinal/metabolismo , Síndrome do Intestino Irritável/tratamento farmacológico , Síndrome do Intestino Irritável/fisiopatologia , Síndrome do Intestino Irritável/psicologia , Parassimpatolíticos/uso terapêutico , Permeabilidade/efeitos dos fármacos , Propilaminas/agonistas , Ratos , Ratos Wistar , Estresse Psicológico/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...