Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain ; 129(Pt 7): 1693-709, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16702190

RESUMO

There is now compelling evidence of mitochondrial dysfunction in motor neuron disease (MND), but the molecular basis of these abnormalities is unknown. It is also unclear whether the observed mitochondrial dysfunction plays a central role in disease pathogenesis, and if so, whether its amelioration might present therapeutic opportunities. We adopted a candidate generation approach using proteomics to screen for changes in mitochondrial protein expression in a well-validated cell-culture model of superoxide dismutase 1 (SOD1) related familial MND (fMND). Changed proteins were identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectroscopy. Protein candidates included apoptotic regulators, anti-oxidants and components of the electron transport chain. Confirmatory Western blotting was performed, and validated protein expression changes were further investigated. Peroxiredoxin 3 (Prx3), a mitochondrial thioredoxin-dependent hydroperoxidase, is downregulated in the presence of mutant SOD1 in both our cell-culture model and in the spinal cord mitochondria of mutant SOD1 transgenic mice. We confirm the expression of Prx3 within the mitochondria of spinal motor neurons in mouse and humans by immunohistochemistry. Using quantitative real-time PCR (Q-PCR), we show that Prx3 is also downregulated in spinal motor neurons from patients with both sporadic (sMND) and SOD1-related fMND. In a disease characterized by oxidative stress, this represents a potentially important deficit in mitochondrial anti-oxidant defence. Recent evidence suggests that oxidative stress from aberrant copper chemistry may not play a major part in the pathogenesis of SOD1-related fMND. From the results of this study we propose disruption of mitochondrial anti-oxidant defence as an alternative mechanism whereby mutant SOD1 may generate oxidative stress within motor neurons. We further demonstrate that ebselen, an anti-oxidant drug already safely used in human studies and that acts as a Prx mimic, is able to ameliorate the toxicity of mutant SOD1 in our cell-culture model. We conclude by showing that ebselen is capable of inducing transcription of the anti-oxidant response element (ARE) and postulate that ebselen may act both by the transcriptional upregulation of anti-oxidant proteins, and directly as an anti-oxidant in its own right.


Assuntos
Antioxidantes/farmacologia , Azóis/farmacologia , Doenças Mitocondriais/metabolismo , Doença dos Neurônios Motores/metabolismo , Compostos Organosselênicos/farmacologia , Superóxido Dismutase/genética , Animais , Antioxidantes/metabolismo , Western Blotting/métodos , Morte Celular/efeitos dos fármacos , Células Cultivadas , Regulação para Baixo , Eletroforese em Gel de Poliacrilamida/métodos , Humanos , Isoindóis , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doença dos Neurônios Motores/genética , Proteínas de Neoplasias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Peroxidases/metabolismo , Peroxirredoxina III , Peroxirredoxinas , Reação em Cadeia da Polimerase/métodos , Proteômica , Elementos de Resposta/efeitos dos fármacos , Medula Espinal/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...