Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(10): 108016, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37854702

RESUMO

Methanogenesis allows methanogenic archaea to generate cellular energy for their growth while producing methane. Thermophilic hydrogenotrophic species of the genus Methanothermobacter have been recognized as robust biocatalysts for a circular carbon economy and are already applied in power-to-gas technology with biomethanation, which is a platform to store renewable energy and utilize captured carbon dioxide. Here, we generated curated genome-scale metabolic reconstructions for three Methanothermobacter strains and investigated differences in the growth performance of these same strains in chemostat bioreactor experiments with hydrogen and carbon dioxide or formate as substrates. Using an integrated systems biology approach, we identified differences in formate anabolism between the strains and revealed that formate anabolism influences the diversion of carbon between biomass and methane. This finding, together with the omics datasets and the metabolic models we generated, can be implemented for biotechnological applications of Methanothermobacter in power-to-gas technology, and as a perspective, for value-added chemical production.

2.
mBio ; 12(6): e0276621, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34809461

RESUMO

Thermophilic Methanothermobacter spp. are used as model microbes to study the physiology and biochemistry of the conversion of molecular hydrogen and carbon dioxide into methane (i.e., hydrogenotrophic methanogenesis). Yet, a genetic system for these model microbes was missing despite intensive work for four decades. Here, we report the successful implementation of genetic tools for Methanothermobacter thermautotrophicus ΔH. We developed shuttle vectors that replicated in Escherichia coli and M. thermautotrophicus ΔH. For M. thermautotrophicus ΔH, a thermostable neomycin resistance cassette served as the selectable marker for positive selection with neomycin, and the cryptic plasmid pME2001 from Methanothermobacter marburgensis served as the replicon. The shuttle-vector DNA was transferred from E. coli into M. thermautotrophicus ΔH via interdomain conjugation. After the successful validation of DNA transfer and positive selection in M. thermautotrophicus ΔH, we demonstrated heterologous gene expression of a thermostable ß-galactosidase-encoding gene (bgaB) from Geobacillus stearothermophilus under the expression control of four distinct synthetic and native promoters. In quantitative in-vitro enzyme activity assay, we found significantly different ß-galactosidase activity with these distinct promoters. With a formate dehydrogenase operon-encoding shuttle vector, we allowed growth of M. thermautotrophicus ΔH on formate as the sole growth substrate, while this was not possible for the empty-vector control. IMPORTANCE The world economies are facing permanently increasing energy demands. At the same time, carbon emissions from fossil sources need to be circumvented to minimize harmful effects from climate change. The power-to-gas platform is utilized to store renewable electric power and decarbonize the natural gas grid. The microbe Methanothermobacter thermautotrophicus is already applied as the industrial biocatalyst for the biological methanation step in large-scale power-to-gas processes. To improve the biocatalyst in a targeted fashion, genetic engineering is required. With our shuttle-vector system for heterologous gene expression in M. thermautotrophicus, we set the cornerstone to engineer the microbe for optimized methane production but also for production of high-value platform chemicals in power-to-x processes.


Assuntos
Expressão Gênica , Vetores Genéticos/genética , Geobacillus/enzimologia , Methanobacteriaceae/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Conjugação Genética , Escherichia coli/genética , Escherichia coli/metabolismo , Galactosidases/genética , Galactosidases/metabolismo , Vetores Genéticos/metabolismo , Geobacillus/genética , Metano/metabolismo , Methanobacteriaceae/crescimento & desenvolvimento , Methanobacteriaceae/metabolismo
3.
Microorganisms ; 8(11)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238546

RESUMO

Anode-assisted fermentations offer the benefit of an anoxic fermentation routine that can be applied to produce end-products with an oxidation state independent from the substrate. The whole cell biocatalyst transfers the surplus of electrons to an electrode that can be used as a non-depletable electron acceptor. So far, anode-assisted fermentations were shown to provide high carbon efficiencies but low space-time yields. This study aimed at increasing space-time yields of an Escherichia coli-based anode-assisted fermentation of glucose to acetoin. The experiments build on an obligate respiratory strain, that was advanced using selective adaptation and targeted strain development. Several transfers under respiratory conditions led to point mutations in the pfl, aceF and rpoC gene. These mutations increased anoxic growth by three-fold. Furthermore, overexpression of genes encoding a synthetic electron transport chain to methylene blue increased the electron transfer rate by 2.45-fold. Overall, these measures and a medium optimization increased the space-time yield in an electrode-assisted fermentation by 3.6-fold.

4.
Mol Microbiol ; 109(5): 571-583, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29995975

RESUMO

Shewanella oneidensis is the best understood model organism for the study of dissimilatory iron reduction. This review focuses on the current state of our knowledge regarding this extracellular respiratory process and highlights its physiologic, regulatory and biochemical requirements. It seems that we have widely understood how respiratory electrons can reach the cell surface and what the minimal set of electron transport proteins to the cell surface is. Nevertheless, even after decades of work in different research groups around the globe there are still several important questions that were not answered yet. In particular, the physiology of this organism, the possible evolutionary benefit of some responses to anoxic conditions, as well as the exact mechanism of electron transfer onto solid electron acceptors are yet to be addressed. The elucidation of these questions will be a great challenge for future work and important for the application of extracellular respiration in biotechnological processes.


Assuntos
Membrana Celular/fisiologia , Shewanella/fisiologia , Membrana Celular/química , Citocromos/genética , Citocromos/metabolismo , Transporte de Elétrons , Elétrons , Flavinas/metabolismo , Heme/metabolismo , Ferro/metabolismo , Oxigênio/metabolismo , Periplasma/química , Periplasma/fisiologia , Shewanella/genética , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo
5.
Biotechnol Biofuels ; 10: 65, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28293295

RESUMO

BACKGROUND: This paper describes the metabolic engineering of Escherichia coli for the anaerobic fermentation of glucose to acetoin. Acetoin has well-established applications in industrial food production and was suggested to be a platform chemical for a bio-based economy. However, the biotechnological production is often hampered by the simultaneous formation of several end products in the absence of an electron acceptor. Moreover, typical production strains are often potentially pathogenic. The goal of this study was to overcome these limitations by establishing an electrode-assisted fermentation process in E. coli. Here, the surplus of electrons released in the production process is transferred to an electrode as anoxic and non-depletable electron acceptor. RESULTS: In a first step, the central metabolism was steered towards the production of pyruvate from glucose by deletion of genes encoding for enzymes of central reactions of the anaerobic carbon metabolism (ΔfrdA-D ΔadhE ΔldhA Δpta-ack). Thereafter, the genes for the acetolactate synthase (alsS) and the acetolactate decarboxylase (alsD) were expressed in this strain from a plasmid. Addition of nitrate as electron acceptor led to an anaerobic acetoin production with a yield of up to 0.9 mol acetoin per mol of glucose consumed (90% of the theoretical maximum). In a second step, the electron acceptor nitrate was replaced by a carbon electrode. This interaction necessitated the further expression of c-type cytochromes from Shewanella oneidensis and the addition of the soluble redox shuttle methylene blue. The interaction with the non-depletable electron acceptor led to an acetoin formation with a yield of 79% of the theoretical maximum (0.79 mol acetoin per mol glucose). CONCLUSION: Electrode-assisted fermentations are a new strategy to produce substances of biotechnological value that are more oxidized than the substrates. Here, we show for the first time a process in which the commonly used chassis strain E. coli was tailored for an electrode-assisted fermentation approach branching off from the central metabolite pyruvate. At this early stage, we see promising results regarding carbon and electron recovery and will use further strain development to increase the anaerobic metabolic turnover rate.

6.
Bioresour Technol ; 186: 89-96, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25812811

RESUMO

Microbial electrochemical cells are an emerging technology for achieving unbalanced fermentations. However, organisms that can serve as potential biocatalysts for this application are limited by their narrow substrate spectrum. This study describes the reprogramming of Escherichia coli for the efficient use of anodes as electron acceptors. Electron transfer into the periplasm was accelerated by 183% via heterologous expression of the c-type cytochromes CymA, MtrA and STC from Shewanella oneidensis. STC was identified as a target for heterologous expression via a two-stage screening approach. First, mass spectroscopic analysis revealed natively expressed cytochromes in S. oneidensis. Thereafter, the corresponding genes were cloned and expressed in E. coli to quantify periplasmic electron transfer activity using methylene blue. This redox dye was further used to expand electron transfer to carbon electrode surfaces. The results demonstrate that E. coli can be reprogrammed from glycerol fermentation to respiration upon production of the new electron transport chain.


Assuntos
Eletrodos/microbiologia , Transporte de Elétrons/fisiologia , Escherichia coli/metabolismo , Fermentação/fisiologia , Glicerol/metabolismo , Proteínas de Bactérias/metabolismo , Respiração Celular/fisiologia , Grupo dos Citocromos c/metabolismo , Oxirredução , Periplasma/metabolismo , Shewanella/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...