Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Lasers Med Sci ; 13: e65, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37041790

RESUMO

Introduction: This study intended to evaluate the safety and possible therapeutic effect of transcranial infrared laser stimulation (TILS) based on photobiomodulation (PBM) among patients with traumatic brain injury (TBI). Methods: Eleven participants who were diagnosed with TBI after full neurological examination and MRI evaluation by a board-certified neurologist completed five to eight 20-minute TILS sessions using the Cytonsys CytonPro-5000 apparatus (pilot laser control, focused wavelength of 1064 nm, maximum output power of 10W, maximum optical power density of 500 mW/cm2, effective area 4.5 cm2 in diameter). Per TILS session, participants underwent a laser dose of 250 mW/cm2 continuous laser wave to each hemisphere using predetermined patient-specific coordinates. Structural imaging was used to neuronavigate individual treatment targets in the frontal cortex (Brodmann area 10). The primary safety measure for this study was the occurrence of adverse events (AEs) or serious adverse events (SAEs). The primary efficacy outcome measure was the participant-rated global rating of change (GRC) post-intervention. Secondary outcome measures included a battery of neuropsychological testing and mood questionnaires done both pre- and post-intervention. Results: All patients enrolled in this study protocol were able to tolerate the study procedures without any AEs or SAEs. Nine out of eleven participants had clinically significant improvements in GRC score (≥ +2). Neuropsychological testing and mood questionnaire outcomes also suggested a positive therapeutic effect. Conclusion: This study provides preliminary evidence supporting the safety and potential efficacy of TILS as a non-invasive clinical intervention for individuals with TBI.

2.
Neurol Clin Pract ; 11(3): e294-e302, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34484904

RESUMO

OBJECTIVE: The pursuit of an effective therapeutic intervention for dementia has inspired interest in the class of medications known as tyrosine kinase inhibitors such as bosutinib. METHODS: Thirty-one patients with probable Alzheimer dementia or Parkinson spectrum disorder with dementia completed 12 months of bosutinib therapy and an additional 12 months of follow-up. The Clinical Dementia Rating scale (as estimated by the Quick Dementia Rating System [QDRS]) was the primary cognitive status outcome measure. Secondary outcome measures included the Repeatable Battery Assessment of Neuropsychological Status (RBANS) and the Montreal Cognitive Assessment. Cox regression methods were used to compare results with population-based estimates of cognitive decline. RESULTS: The present article reports on cognitive outcomes obtained at 12 months for 31 participants and up to 24 months for a 16-participant subset. Safety and tolerability of bosutinib were confirmed among the study population (Mage = 73.7 years, SDage = 14 years). Bosutinib was associated with less worsening in Clinical Dementia Rating (CDR) scores (hazard ratio = -0.62, p < 0.001, 95% confidence interval [CI]: -1.02 to -0.30) and less decline in RBANS performance (hazard ratio = -3.42, p < 0.001, 95% CI: -3.59 to -3.72) during the year of treatment than population-based estimates of decline. In the 24-month follow-up, wherein 16 patients were observed after 1 year postintervention, 31.2% of participants exhibited worsened CDR levels compared with their 12-month performances. CONCLUSIONS: Results support an overall positive outcome after 1 year of bosutinib. Future studies should explore the relationship between tyrosine kinases and neurodegenerative pathology as well as related avenues of treatment.

3.
Brain Stimul ; 14(4): 1022-1031, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34198105

RESUMO

OBJECTIVE: Transcranial Focused Ultrasound (tFUS) is a promising new potential neuromodulation tool. However, the safety of tFUS neuromodulation has not yet been assessed adequately. Patients with refractory temporal lobe epilepsy electing to undergo an anterior temporal lobe resection present a unique opportunity to evaluate the safety and efficacy of tFUS neuromodulation. Histological changes in tissue after tFUS can be examined after surgical resection, while further potential safety concerns can be assessed using neuropsychological testing. METHODS: Neuropsychological functions were assessed in eight patients before and after focused ultrasound sonication of the temporal lobe at intensities up to 5760 mW/cm2. Using the BrainSonix Pulsar 1002, tFUS was delivered under MR guidance, using the Siemens Magnetom 3T Prisma scanner. Neuropsychological changes were assessed using various batteries. Histological changes were assessed using hematoxylin and eosin staining, among others. RESULTS: With respect to safety, the histological analysis did not reveal any detectable damage to the tissue, except for one subject for whom the histology findings were inconclusive. In addition, neuropsychological testing did not show any statistically significant changes in any test, except for a slight decrease in performance on one of the tests after tFUS. SIGNIFICANCE: This study supports the hypothesis that low-intensity Transcranial Focused Ultrasound (tFUS) used for neuromodulation of brain circuits at intensities up to 5760 mW/cm2 may be safe for use in human research. However, due to methodological limitations in this study and inconclusive findings, more work is warranted to establish the safety. Future directions include greater number of sonications as well as longer exposure at higher intensity levels to further assess the safety of tFUS for modulation of neuronal circuits.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/terapia , Humanos , Sonicação
4.
J Psychiatr Res ; 138: 3-14, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33798786

RESUMO

Anxiety Disorders are prevalent and often chronic, recurrent conditions that reduce quality of life. The first-line treatments, such as serotonin reuptake inhibitors and cognitive behavioral therapy, leave a significant proportion of patients symptomatic. As psychiatry moves toward targeted circuit-based treatments, there is a need for a theory that unites the phenomenology of anxiety with its underlying neural circuits. The Alarm, Belief, Coping (ABC) theory of anxiety describes how the neural circuits associated with anxiety interact with each other and domains of the anxiety symptoms, both temporally and spatially. The latest advancements in neuroimaging techniques offer the ability to assess these circuits in vivo. Using Neurosynth, a large open-access meta-analytic imaging database, the association between terms related to specific neural circuits was explored within the ABC theory framework. Alarm-related terms were associated with the amygdala, anterior cingulum, insula, and bed nucleus of stria terminalis. Belief-related terms were associated with medial prefrontal cortex, precuneus, bilateral temporal poles, and hippocampus. Coping-related terms were associated with the ventrolateral and dorsolateral prefrontal cortices, basal ganglia, and anterior cingulate. Neural connections underlying the functional neuroanatomy of the ABC model were observed. Additionally, there was considerable interaction and overlap between circuits associated with the symptom domains. Further neuroimaging research is needed to explore the dynamic interaction between the functional domains of the ABC theory. This will pave the way for probing the neuroanatomical underpinnings of anxiety disorders and provide an evidence-based foundation for the development of targeted treatments, such as neuromodulation.


Assuntos
Transtornos de Ansiedade , Qualidade de Vida , Ansiedade , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Neuroimagem
5.
Nat Commun ; 7: 10929, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26965475

RESUMO

Reconfigurable devices, whose shape can be drastically altered, are central to expandable shelters, deployable space structures, reversible encapsulation systems and medical tools and robots. All these applications require structures whose shape can be actively controlled, both for deployment and to conform to the surrounding environment. While most current reconfigurable designs are application specific, here we present a mechanical metamaterial with tunable shape, volume and stiffness. Our approach exploits a simple modular origami-like design consisting of rigid faces and hinges, which are connected to form a periodic structure consisting of extruded cubes. We show both analytically and experimentally that the transformable metamaterial has three degrees of freedom, which can be actively deformed into numerous specific shapes through embedded actuation. The proposed metamaterial can be used to realize transformable structures with arbitrary architectures, highlighting a robust strategy for the design of reconfigurable devices over a wide range of length scales.


Assuntos
Manufaturas/análise , Polietilenotereftalatos/química , Elasticidade , Dureza , Teste de Materiais , Maleabilidade , Propriedades de Superfície , Tecnologia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...