Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
BMC Ecol Evol ; 23(1): 66, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37974080

RESUMO

BACKGROUND: The evening primrose family (Onagraceae) includes 664 species (803 taxa) with a center of diversity in the Americas, especially western North America. Ongoing research in Onagraceae includes exploring striking variation in floral morphology, scent composition, and breeding system, as well as the role of these traits in driving diversity among plants and their interacting pollinators and herbivores. However, these efforts are limited by the lack of a comprehensive, well-resolved phylogeny. Previous phylogenetic studies based on a few loci strongly support the monophyly of the family and the sister relationship of the two largest tribes but fail to resolve several key relationships. RESULTS: We used a target enrichment approach to reconstruct the phylogeny of Onagraceae using 303 highly conserved, low-copy nuclear loci. We present a phylogeny for Onagraceae with 169 individuals representing 152 taxa sampled across the family, including extensive sampling within the largest tribe, Onagreae. Deep splits within the family are strongly supported, whereas relationships among closely related genera and species are characterized by extensive conflict among individual gene trees. CONCLUSIONS: This phylogenetic resource will augment current research projects focused throughout the family in genomics, ecology, coevolutionary dynamics, biogeography, and the evolution of characters driving diversification in the family.


Assuntos
Oenothera biennis , Onagraceae , Humanos , Filogenia , Oenothera biennis/genética , Melhoramento Vegetal , Genômica
2.
BMC Genomics ; 23(1): 124, 2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35151274

RESUMO

BACKGROUND: Plant volatiles play an important role in both plant-pollinator and plant-herbivore interactions. Intraspecific polymorphisms in volatile production are ubiquitous, but studies that explore underlying differential gene expression are rare. Oenothera harringtonii populations are polymorphic in floral emission of the monoterpene (R)-(-)-linalool; some plants emit (R)-(-)-linalool (linalool+ plants) while others do not (linalool- plants). However, the genes associated with differential production of this floral volatile in Oenothera are unknown. We used RNA-Seq to broadly characterize differential gene expression involved in (R)-(-)-linalool biosynthesis. To identify genes that may be associated with the polymorphism for this trait, we used RNA-Seq to compare gene expression in six different Oenothera harringtonii tissues from each of three linalool+ and linalool- plants. RESULTS: Three clusters of differentially expressed genes were enriched for terpene synthase activity: two were characterized by tissue-specific upregulation and one by upregulation only in plants with flowers that produce (R)-(-)-linalool. A molecular phylogeny of all terpene synthases identified two putative (R)-(-)-linalool synthase transcripts in Oenothera harringtonii, a single allele of which is found exclusively in linalool+ plants. CONCLUSIONS: By using a naturally occurring polymorphism and comparing different tissues, we were able to identify candidate genes putatively involved in the biosynthesis of (R)-(-)-linalool. Expression of these genes in linalool- plants, while low, suggests a regulatory polymorphism, rather than a population-specific loss-of-function allele. Additional terpene biosynthesis-related genes that are up-regulated in plants that emit (R)-(-)-linalool may be associated with herbivore defense, suggesting a potential economy of scale between plant reproduction and defense.


Assuntos
Oenothera biennis , Oenothera , Onagraceae , Flores/genética , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Odorantes
3.
Plant Cell ; 34(4): 1189-1206, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-34954804

RESUMO

Cytosine methylation is a reversible epigenetic modification of DNA. In plants, removal of cytosine methylation is accomplished by the four members of the DEMETER (DME) family of 5-methylcytosine DNA glycosylases, named DME, DEMETER-LIKE2 (DML2), DML3, and REPRESSOR OF SILENCING1 (ROS1) in Arabidopsis thaliana. Demethylation by DME is critical for seed development, preventing experiments to determine the function of the entire gene family in somatic tissues by mutant analysis. Here, we bypassed the reproductive defects of dme mutants to create somatic quadruple homozygous mutants of the entire DME family. dme; ros1; dml2; and dml3 (drdd) leaves exhibit hypermethylated regions compared with wild-type leaves and rdd triple mutants, indicating functional redundancy among all four demethylases. Targets of demethylation include regions co-targeted by RNA-directed DNA methylation and, surprisingly, CG gene body methylation, indicating dynamic methylation at these less-understood sites. Additionally, many tissue-specific methylation differences are absent in drdd, suggesting a role for active demethylation in generating divergent epigenetic states across wild-type tissues. Furthermore, drdd plants display an early flowering phenotype, which involves 5'-hypermethylation and transcriptional down-regulation of FLOWERING LOCUS C. Active DNA demethylation is therefore required for proper methylation across somatic tissues and defines the epigenetic landscape of intergenic and coding regions.


Assuntos
Proteínas de Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Desmetilação do DNA , Metilação de DNA/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...