Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Genet Genomics ; 296(5): 1041-1049, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34110475

RESUMO

Cotton fiber mutants are valuable resources for studying functions of altered genes and their roles in fiber development. The n4t is a recessive tufted-fuzzless seed mutant created through chemical mutagenesis with ethyl methanesulfonate. Genetic analysis indicated that the tufted-fuzzless phenotype is controlled by a single recessive locus. In this study, we developed an F2 population of 602 progeny plants and sequenced the genomes of the parents and two DNA bulks from F2 progenies showing the mutant phenotype. We identified DNA sequence variants between the tufted-fuzzless mutant and wild type by aligning the sequence reads to the reference TM-1 genome and designed subgenome-specific SNP markers. We mapped the n4t locus on chromosome D04 within a genomic interval of about 411 kb. In this region, seven genes showed significant differential expression between the tufted-fuzzless mutant and wild type. Possible candidate genes are discussed in this study. The utilization of the n4t mutant along with other fiber mutants will facilitate our understanding of the molecular mechanisms of cotton fiber cell growth and development.


Assuntos
Fibra de Algodão , Genes de Plantas , Gossypium/genética , Sementes/genética , Mapeamento Cromossômico/métodos , Cromossomos de Plantas , Cruzamentos Genéticos , Metanossulfonato de Etila/toxicidade , Regulação da Expressão Gênica de Plantas , Loci Gênicos , Gossypium/efeitos dos fármacos , Mutação , Polimorfismo de Nucleotídeo Único , Sementes/efeitos dos fármacos , Sementes/fisiologia
2.
Theor Appl Genet ; 133(1): 271-282, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31624873

RESUMO

KEY MESSAGE: The EMS-induced threonine/isoleucine substitution in a tetratricopeptide repeat-like superfamily protein encoded by gene Ghir_A12G008870 is responsible for the Ligon-lintless-y (liy) short fiber phenotype in cotton. A short fiber mutant Ligon-lintless-y was created through treating the seeds of the cotton line MD15 with ethyl methanesulfonate. Genetic analysis indicated that the short fiber phenotype is controlled by a single recessive locus designated liy. From F2 populations derived from crosses between the mutant and its wild type (WT), we selected 132 short fiber progeny (liy/liy) and made two DNA bulks. We sequenced these DNA bulks along with the two parents of the population. The liy locus was located on chromosome A12. Using multiple F2 populations and F3 progeny plants, we mapped the liy locus within a genomic region of 1.18 Mb. In this region, there is only one gene, i.e., Ghir_A12G008870 encoding a tetratricopeptide repeat-like superfamily protein that has a non-synonymous mutation between the liy mutant and its WT. Analysis of a SNP marker representing this gene in the F2 and F3 progeny plants demonstrated its complete linkage with the liy short fiber phenotype. We further analyzed this SNP marker in a panel of 384 cotton varieties. The mutant allele is absent in all varieties analyzed. RNAseq and RT-qPCR analysis of the gene Ghir_A12G008870 during fiber development showed a significant expression difference between the liy mutant and its WT in developing fiber cells beginning at 12 days post-anthesis. Virus-induced gene silencing of the gene Ghir_A12G008870 significantly reduced the fiber length of the WT cotton line MD15. Taken together, our results suggest that the gene Ghir_A12G008870 is involved in the cotton fiber cell elongation process and is a promising candidate gene responsible for the liy short fiber phenotype.


Assuntos
Cromossomos de Plantas/genética , Fibra de Algodão , Metanossulfonato de Etila/metabolismo , Genes de Plantas , Gossypium/genética , Mutação/genética , Repetições de Tetratricopeptídeos , Sequência de Bases , Mapeamento Cromossômico , Segregação de Cromossomos/genética , Cruzamentos Genéticos , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Loci Gênicos , Marcadores Genéticos , Fenótipo , Polimorfismo Genético , Fatores de Tempo
3.
Genomics ; 109(3-4): 320-329, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28577792

RESUMO

In this work we describe a chemically-induced short fiber mutant cotton line, Ligon-lintless-y (liy), which is controlled by a single recessive locus and affects multiple traits, including height of the plant, and length and maturity of fiber. An RNAseq analysis was used to evaluate global transcriptional changes during cotton fiber development at 3, 8 and 16days post anthesis. We found that 613, 2629 and 3397 genes were significantly down-regulated, while 2700, 477 and 3260 were significantly up-regulated in liy at 3, 8 and 16 DPA. Gene set enrichment analysis revealed that many metabolic pathways, including carbohydrate, cell wall, hormone metabolism and transport were substantially altered in liy developing fibers. We discuss perturbed expression of genes involved in signal transduction and biosynthesis of phytohormones, such as auxin, abscisic acid, gibberellin and ethylene. The results of this study provide new insights into transcriptional regulation of cotton fiber development.


Assuntos
Celulose/biossíntese , Fibra de Algodão , Gossypium/genética , Mutação , Transcriptoma , Transporte Biológico , Parede Celular/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Gossypium/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Análise de Sequência de RNA , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA