Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2947, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316818

RESUMO

Graphene-covered hexagonal SiC substrates have been frequently discussed to be appropriate starting points for epitaxial overlayers of Xenes, such as plumbene, or even their deposition as intercalates between graphene and SiC. Here, we investigate, within density functional theory, the plumbene deposition for various layer orderings and substrate terminations. By means of total energy studies we demonstrate the favorization of the intercalation versus the epitaxy for both C-terminated and Si-terminated 4H-SiC substrates. These results are explained in terms of chemical bonding and by means of layer-resolved projected band structures. Our results are compared with available experimental findings.

2.
Nanomaterials (Basel) ; 14(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38334542

RESUMO

We report on DFT-TDDFT studies of the structural, electronic and vibrational properties of B24N24 nanocapsules and the effect of encapsulation of homonuclear diatomic halogens (Cl2, Br2 and I2) and chalcogens (S2 and Se2) on the interaction of the B24N24 nanocapsules with the divalent magnesium cation. In particular, to foretell whether these BN nanostructures could be proper negative electrodes for magnesium-ion batteries, the structural, vibrational and electronic properties, as well as the interaction energy and the cell voltage, which is important for applications, have been computed for each system, highlighting their differences and similarities. The encapsulation of halogen and chalcogen diatomic molecules increases the cell voltage, with an effect enhanced down groups 16 and 17 of the periodic table, leading to better performing anodes and fulfilling a remarkable cell voltage of 3.61 V for the iodine-encapsulated system.

3.
Nanomaterials (Basel) ; 13(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37630942

RESUMO

We present a comprehensive study of the structural and electronic properties of a graphene/phosphorene (G/P) heterostructure in the framework of density functional theory, including van der Waals interaction in the exchange-correlation functional. While the G(4 × 1)/P(3 × 1) superlattice usually used in the literature is subject to a strain as high as about 7%, the in-plane strain could be drastically reduced to under 1% in the G(4 × 13)/P(3 × 12) heterostructure investigated here. Adapting the lattice constants of the rectangular lattices, the equilibrium configuration in the xy plane of phosphorene relative to the graphene layer is optimized. This results in an equilibrium interlayer distance of 3.5 Å and a binding energy per carbon atom of 37 meV, confirming the presence of weak van der Waals interaction between the graphene and the phosphorene layers. The electronic properties of the heterostructure are evaluated under different values of interlayer distance, strain and applied vertical electric field. We demonstrate that G/P heterostructures form an n-type Schottky contact, which can be transformed into p-type under external perturbations. These findings, together with the possibility to control the gaps and barrier heights, suggest that G/P heterostructures are promising for novel applications in electronics and may open a new avenue for the realization of innovative optoelectronic devices.

4.
J Phys Condens Matter ; 33(43)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34315138

RESUMO

We present a computationally efficient and accurate methodology to computeZ2topological invariants for systems without inversion symmetry including quasiparticle (QP) effects within the density functional theory (DFT)-1/2 method. The Wannier charge center evolution is applied to compute theZ2topological invariant and investigate the topological properties of group-IV graphene-like systems, graphene, silicene, germanene and stanene, whose inversion symmetry is broken by simultaneous functionalization with hydrogen and fluorine atoms. Different atomic arrangements are studied. The systems are stable with cohesive energy decreasing along the row from carbon to tin. A similar trend is observed for band gaps. The resulting topological invariants are compared with values obtained within conventional DFT and using a hybrid exchange-correlation functional. The variation of the results with the treatment of exchange and correlation demonstrates the importance of QP corrections for the prediction of the topological or trivial character.

5.
Nano Lett ; 21(12): 5301-5307, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34096736

RESUMO

The allotropic affinity for bulk silicon and unique electronic and optical properties make silicene a promising candidate for future high-performance devices compatible with mature complementary metal-oxide-semiconductor technology. However, silicene's outstanding properties are not preserved on its most prominent growth templates, due to strong substrate interactions and hybridization effects. In this letter, we report the optical properties of silicene epitaxially grown on Au(111). A novel in situ passivation methodology with few-layer hexagonal boron nitride enables detailed ex situ characterization at ambient conditions via µ-Raman spectroscopy and reflectance measurements. The optical properties of silicene on Au(111) appeared to be in accordance with the characteristics predicted theoretically for freestanding silicene, allowing the conclusion that its prominent electronic properties are preserved. The absorption features are, however, modified by many-body effects induced by the Au substrate due to an increased screening of electron-hole interactions.

6.
Sci Rep ; 10(1): 10719, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32612146

RESUMO

Absorption and emission of pristine-like semiconducting monolayers of BN, AlN, GaN, and InN are systematically studied by ab-initio methods. We calculate the absorption spectra for in-plane and out-of-plane light polarization including quasiparticle and excitonic effects. Chemical trends with the cation of the absorption edge and the exciton binding are discussed in terms of the band structures. Exciton binding energies and localization radii are explained within the Rytova-Keldysh model for excitons in two dimensions. The strong excitonic effects are due to the interplay of low dimensionality, confinement effects, and reduced screening. We find exciton radiative lifetimes ranging from tenths of picoseconds (BN) to tenths of nanoseconds (InN) at room temperature, thus making 2D nitrides, especially InN, promising materials for light-emitting diodes and high-performance solar cells.

7.
ACS Omega ; 5(22): 13268-13277, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32548513

RESUMO

We report a systematic investigation on the electronic and optical properties of the smallest stable clusters of alkaline-earth metal fluorides, namely, MgF2, CaF2, SrF2, and BaF2. For these clusters, we perform density functional theory (DFT) and time-dependent DFT (TDDFT) calculations with a localized Gaussian basis set. For each molecule ((MF2) n , n = 1-3, M = Mg, Ca, Sr, Ba), we determine a series of molecular properties, namely, ground-state energies, fragmentation energies, electron affinities, ionization energies, fundamental energy gaps, optical absorption spectra, and exciton binding energies. We compare electronic and optical properties between clusters of different sizes with the same metal atom and between clusters of the same size with different metal atoms. From this analysis, it turns out that MgF2 clusters have distinguished ground-state and excited-state properties with respect to the other fluoride molecules. Sizeable reductions of the optical onset energies and a consistent increase of excitonic effects are observed for all clusters under study with respect to the corresponding bulk systems. Possible consequences of the present results are discussed with respect to applied and fundamental research.

8.
Nature ; 580(7802): 205-209, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32269353

RESUMO

Silicon crystallized in the usual cubic (diamond) lattice structure has dominated the electronics industry for more than half a century. However, cubic silicon (Si), germanium (Ge) and SiGe alloys are all indirect-bandgap semiconductors that cannot emit light efficiently. The goal1 of achieving efficient light emission from group-IV materials in silicon technology has been elusive for decades2-6. Here we demonstrate efficient light emission from direct-bandgap hexagonal Ge and SiGe alloys. We measure a sub-nanosecond, temperature-insensitive radiative recombination lifetime and observe an emission yield similar to that of direct-bandgap group-III-V semiconductors. Moreover, we demonstrate that, by controlling the composition of the hexagonal SiGe alloy, the emission wavelength can be continuously tuned over a broad range, while preserving the direct bandgap. Our experimental findings are in excellent quantitative agreement with ab initio theory. Hexagonal SiGe embodies an ideal material system in which to combine electronic and optoelectronic functionalities on a single chip, opening the way towards integrated device concepts and information-processing technologies.

9.
Sci Rep ; 8(1): 3534, 2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-29476113

RESUMO

We investigate electronic and optical properties of the topological Weyl semimetals TaAs, TaP, NbAs and NbP crystallizing in bct geometry by means of the ab initio density functional theory with spin-orbit interaction within the independent-particle approximation. The small energetical overlap of Ta5d or Nb4d derived conduction and valence bands leads to electron and/or hole pockets near the Fermi energy at the 24 Weyl nodes. The nodes give rise to two-(three-)dimensional Dirac cones for the W1 (W2) Weyl type. The band dispersion and occupation near the Weyl nodes determine the infrared optical properties. They are dominated by interband transitions, which lead to a deviation from the expected constant values of the imaginary part of the dielectric function. The resulting polarization anisotropy is also visible in the real part of the optical conductivity, whose lineshape deviates from the expected linearity. The details of the Weyl nodes are discussed in relation to recent ARPES results for TaAs and NbP, and compared with measured optical spectra for TaAs. The spectral features of the anisotropic and tilted Weyl fermions are restricted to low excitation energies above absorption onsets due to the band occupation.

10.
Sci Rep ; 7(1): 15700, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29146916

RESUMO

Growth of X-enes, such as silicene, germanene and stanene, requires passivated substrates to ensure the survival of their exotic properties. Using first-principles methods, we study as-grown graphene on polar SiC surfaces as suitable substrates. Trilayer combinations with coincidence lattices with large hexagonal unit cells allow for strain-free group-IV monolayers. In contrast to the Si-terminated SiC surface, van der Waals-bonded honeycomb X-ene/graphene bilayers on top of the C-terminated SiC substrate are stable. Folded band structures show Dirac cones of the overlayers with small gaps of about 0.1 eV in between. The topological invariants of the peeled-off X-ene/graphene bilayers indicate the presence of topological character and the existence of a quantum spin Hall phase.

11.
Sci Rep ; 7: 45500, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28383018

RESUMO

Using ab initio density functional theory the band structure and the dielectric function of a bct Cd3As2 crystal are calculated. We find a Dirac semimetal with two Dirac nodes k± near the Γ point on the tetragonal axis. The bands near the Fermi level exhibit a linear behavior. The resulting Dirac cones are anisotropic and the electron-hole symmetry is destroyed along the tetragonal axis. Along this axis the symmetry-protected band linearity only exists in a small energy interval. The Dirac cones seemingly found by ARPES in a wider energy range are interpreted in terms of pseudo-linear bands. The behavior as 3D graphene-like material is traced back to As p orbital pointing to Cd vacancies, in directions which vary throughout the unit cell. Because of the Dirac nodes the dielectric functions (imaginary part) show a plateau for vanishing frequencies whose finite value is proportional to the Sommerfeld fine structure constant but varies with the light polarization. The consequences of the anisotropy of the Dirac cones are highlighted for the polarization dependence of the infrared optical conductivity.

12.
J Phys Condens Matter ; 28(28): 284005, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27227337

RESUMO

Despite intense research the microscopic atomic structure of Au-induced nanowires on Ge(0 0 1) substrates is still under discussion. We analyse a variety of structural models for Au-induced nanowires on the Ge(0 0 1) surface using first-principles calculations. Here we focus on subridge modifications at higher Au coverages and study geometries based on the giant missing row model with Ge-Ge dimers in the grooves between the nanowires due to replacing them by Ge-Au heterodimers or Au-Au homodimers. Stable geometries are predicted for higher Au coverages, which however have only a minor influence on the electronic structure. The findings are interpreted that the Au coverage and the actual geometry may vary in the various experiments according to the preparation conditions.

13.
ACS Nano ; 10(7): 6474-83, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27014920

RESUMO

The epitaxy of many organic films on inorganic substrates can be classified within the framework of rigid lattices which helps to understand the origin of energy gain driving the epitaxy of the films. Yet, there are adsorbate-substrate combinations with distinct mutual orientations for which this classification fails and epitaxy cannot be explained within a rigid lattice concept. It has been proposed that tiny shifts in atomic positions away from ideal lattice points, so-called static distortion waves (SDWs), are responsible for the observed orientational epitaxy in such cases. Using low-energy electron diffraction and scanning tunneling microscopy, we provide direct experimental evidence for SDWs in organic adsorbate films, namely hexa-peri-hexabenzocoronene on graphite. They manifest as wave-like sub-Ångström molecular displacements away from an ideal adsorbate lattice which is incommensurate with graphite. By means of a density-functional-theory based model, we show that, due to the flexibility in the adsorbate layer, molecule-substrate energy is gained by straining the intermolecular bonds and that the resulting total energy is minimal for the observed domain orientation, constituting the orientational epitaxy. While structural relaxation at an interface is a common assumption, the combination of the precise determination of the incommensurate epitaxial relation, the direct observation of SDWs in real space, and their identification as the sole source of epitaxial energy gain constitutes a comprehensive proof of this effect.

14.
Phys Rev B ; 94(5)2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28459114

RESUMO

The evolution of local ferroelectric lattice distortions in multiferroic Ge1-x Mn x Te is studied by x-ray diffraction, x-ray absorption spectroscopy and density functional theory. We show that the anion/cation displacements smoothly decrease with increasing Mn content, thereby reducing the ferroelectric transition from 700 to 100 K at x = 0.5, where the ferromagnetic Curie temperature reaches its maximum. First principles calculations explain this quenching by different local bond contributions of the Mn 3d shell compared to the Ge 4s shell in excellent quantitative agreement with the experiments.

15.
Nano Lett ; 15(6): 4155-60, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25978621

RESUMO

The metal-atom chains on the Si(111) - 5 × 2 - Au surface represent an exceedingly interesting system for the understanding of one-dimensional electrical interconnects. While other metal-atom chain structures on silicon suffer from metal-to-insulator transitions, Si(111) - 5 × 2 - Au stays metallic at least down to 20 K as we have proven by the anisotropic absorption from localized plasmon polaritons in the infrared. A quantitative analysis of the infrared plasmonic signal done here for the first time yields valuable band structure information in agreement with the theoretically derived data. The experimental and theoretical results are consistently explained in the framework of the atomic geometry, electronic structure, and IR spectra of the recent Kwon-Kang model.

16.
J Phys Chem Lett ; 6(18): 3615-20, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26722731

RESUMO

The Si(111)-5×2-Au surface is increasingly of interest because it is one of the rare atomic chain systems with quasi-one-dimensional properties. For the deposition of 0.7 monolayers of Au, these chains are metallic. Upon the evaporation of an additional submonolayer amount of gold, the surface becomes insulating but keeps the 5×2 symmetry. This metal-to-insulator transition was in situ monitored based on the infrared plasmonic signal change with coverage. The phase transition is theoretically explained by total-energy and band-structure calculations. Accordingly, it can be understood in terms of the occupation of the originally half-filled one-dimensional band at the Fermi level. By annealing the system, the additional gold is removed from the surface and the plasmonic signal is recovered, which underlines the stability of the metallic structure. So, recent results on the infrared plasmonic signals of the Si(111)-5 × 2-Au surface are supported. The understanding of potential one-dimensional electrical interconnects is improved.

17.
J Phys Condens Matter ; 26(12): 125501, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24594731

RESUMO

One- and two-particle effects in the electronic and optical spectra of the fluoride compound BaF2 are determined using density functional theory and a many-body perturbation scheme. A wide energy range has been considered, including the visible and all the ultraviolet region. The GW approximation for the electronic self-energy has been used to tackle the one-particle excitations problem, enabling us to determine the electronic energy bands and densities of states of this fluoride. For the optical properties, the two-particle effects calculated with the Bethe-Salpeter scheme turn out to play a fundamental role. A bound exciton positioned at about 1.5 eV below the one-particle gap is forecasted. The optical absorption and the electron energy loss spectra together with other optical functions are in good agreement with the experimental results up to 15 eV. In fact, for this part of the spectrum a self-consistent one-particle scheme along with the Bethe-Salpeter approach produces notable results. Less satisfactory results for the higher energy region in the spectra have been produced with the proposed method. Possible causes of these discrepancies are fully discussed.


Assuntos
Compostos de Bário/química , Fluoretos/química , Modelos Químicos , Modelos Moleculares , Simulação por Computador , Condutividade Elétrica , Campos Eletromagnéticos , Transporte de Elétrons , Refratometria
18.
J Phys Condens Matter ; 25(48): 486002, 2013 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-24177337

RESUMO

We study the formation of local magnetic moments and the magnetic anisotropy of the antiferromagnetic transition-metal compounds FeO and CoO in the framework of the density functional theory. Exchange and correlation are described within two (semi-)local approximations, the local spin-density approximation (LDA) and the generalized gradient approximation (GGA), in order to investigate the role of gradient corrections. An additional on-site Coulomb interaction U is considered in an LDA+U/GGA+U approach and spin-orbit interaction is taken into account. We find that the orbital magnetization is strongly quenched in the GGA+U approach compared to LDA+U results and experimental findings. The quenching is explained in terms of an overestimated exchange enhancement for the partially filled 3d shells due to the gradient corrections inherent in GGA+U.

19.
J Phys Condens Matter ; 25(39): 395305, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-24002054

RESUMO

We present first-principles studies of the optical absorbance of the group IV honeycomb crystals graphene, silicene, germanene, and tinene. We account for many-body effects on the optical properties by using the non-local hybrid functional HSE06. The optical absorption peaks are blueshifted due to quasiparticle corrections, while the influence on the low-frequency absorbance remains unchanged and reduces to a universal value related to the Sommerfeld fine structure constant. At the Dirac points spin-orbit interaction opens fundamental band gaps; parabolic bands with a very small effective mass emerge. Consequently, the low-frequency absorbance is modified with a spin-orbit-induced transparency region and an increase of the absorbance at the fundamental absorption edge.

20.
Nanotechnology ; 24(40): 405702, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24029081

RESUMO

We investigate the optical properties of hydrogenated α-Sn nanocrystals up to diameters of 3.6 nm in the framework of an ab initio pseudopotential method including spin-orbit interaction (SOI) and the repeated supercell approximation. The fundamental absorption and emission edges are determined including quasiparticle effects and electron-hole interaction. The atomic geometries in the ground and excited electronic states follow from total energy optimization. We discuss the oscillator strengths of the optical absorption near the fundamental gaps for the most important transitions. We demonstrate that the spectra can only be correctly described including SOI. The strongly size-dependent Stokes shifts between optical absorption and emission are shown to be mainly a consequence of the different atomic geometries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...