Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
PLoS One ; 19(3): e0299541, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38551930

RESUMO

The activities of the phospholipase C gamma (PLCγ) 1 and 2 enzymes are essential for numerous cellular processes. Unsurprisingly, dysregulation of PLCγ1 or PLCγ2 activity is associated with multiple maladies including immune disorders, cancers, and neurodegenerative diseases. Therefore, the modulation of either of these two enzymes has been suggested as a therapeutic strategy to combat these diseases. To aid in the discovery of PLCγ family enzyme modulators that could be developed into therapeutic agents, we have synthesized a high-throughput screening-amenable micellular fluorogenic substrate called C16CF3-coumarin. Herein, the ability of PLCγ1 and PLCγ2 to enzymatically process C16CF3-coumarin was confirmed, the micellular assay conditions were optimized, and the kinetics of the reaction were determined. A proof-of-principle pilot screen of the Library of Pharmacologically Active Compounds 1280 (LOPAC1280) was performed. This new substrate allows for an additional screening methodology to identify modulators of the PLCγ family of enzymes.


Assuntos
Corantes Fluorescentes , Fosfatidilinositóis , Fosfolipase C gama , Diester Fosfórico Hidrolases , Cumarínicos/farmacologia , Fosfolipases Tipo C
2.
Alzheimers Dement (N Y) ; 9(4): e12429, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023622

RESUMO

INTRODUCTION: The risk of developing Alzheimer's disease is associated with genes involved in microglial function. Inositol polyphosphate-5-phosphatase (INPP5D), which encodes Src homology 2 (SH2) domain-containing inositol polyphosphate 5-phosphatase 1 (SHIP1), is a risk gene expressed in microglia. Because SHIP1 binds receptor immunoreceptor tyrosine-based inhibitory motifs (ITIMs), competes with kinases, and converts PI(3,4,5)P3 to PI(3,4)P2, it is a negative regulator of microglia function. Validated inhibitors are needed to evaluate SHIP1 as a potential therapeutic target. METHODS: We identified inhibitors and screened the enzymatic domain of SHIP1. A protein construct containing two domains was used to evaluate enzyme inhibitor potency and selectivity versus SHIP2. Inhibitors were tested against a construct containing all ordered domains of the human and mouse proteins. A cellular thermal shift assay (CETSA) provided evidence of target engagement in cells. Phospho-AKT levels provided further evidence of on-target pharmacology. A high-content imaging assay was used to study the pharmacology of SHIP1 inhibition while monitoring cell health. Physicochemical and absorption, distribution, metabolism, and excretion (ADME) properties were evaluated to select a compound suitable for in vivo studies. RESULTS: SHIP1 inhibitors displayed a remarkable array of activities and cellular pharmacology. Inhibitory potency was dependent on the protein construct used to assess enzymatic activity. Some inhibitors failed to engage the target in cells. Inhibitors that were active in the CETSA consistently destabilized the protein and reduced pAKT levels. Many SHIP1 inhibitors were cytotoxic either at high concentration due to cell stress or they potently induced cell death depending on the compound and cell type. One compound activated microglia, inducing phagocytosis at concentrations that did not result in significant cell death. A pharmacokinetic study demonstrated brain exposures in mice upon oral administration. DISCUSSION: 3-((2,4-Dichlorobenzyl)oxy)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl) pyridine activated primary mouse microglia and demonstrated exposures in mouse brain upon oral dosing. Although this compound is our recommended chemical probe for investigating the pharmacology of SHIP1 inhibition at this time, further optimization is required for clinical studies. Highlights: Cellular thermal shift assay (CETSA) and signaling (pAKT) assays were developed to provide evidence of src homology 2 (SH2) domain-contaning inositol phosphatase 1 (SHIP1) target engagement and on-target activity in cellular assays.A phenotypic high-content imaging assay with simultaneous measures of phagocytosis, cell number, and nuclear intensity was developed to explore cellular pharmacology and monitor cell health.SHIP1 inhibitors demonstrate a wide range of activity and cellular pharmacology, and many reported inhibitors are cytotoxic.The chemical probe 3-((2,4-dichlorobenzyl)oxy)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl) pyridine is recommended to explore SHIP1 pharmacology.

3.
Epigenetics ; 18(1): 2268834, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37871278

RESUMO

The current study was designed to use an epigenome-wide association approach (EWAS) to identify potential systemic DNA methylation alterations that are associated with obesity using 22 discordant twin pairs. Buccal cells (from a cheek swab) were used as a non-obesity relevant purified marker cell for the epigenetic analysis. Analysis of differential DNA methylation regions (DMRs) was used to identify epigenetic associations with metabolic and dietary measures related to obesity with discordant twins. An edgeR analysis provided a DMR signature with p < 1e-04, but statistical significance was reduced due to low sample size and known multiple origins of obesity. A weighted gene coexpression network analysis (WGCNA) was performed and identified modules (p < 0.005) of epigenetic sites that correlated with different metabolic and dietary measures. The DMR and WGCNA epigenetic sites were near genes (e.g., CIDEC, SPP1, ZFPG9, and POMC) with previously identified obesity associated pathways (e.g., metabolism, cholesterol, and fat digestion). Observations demonstrate the feasibility of identifying systemic epigenetic biomarkers for obesity, which can be further investigated for clinical relevance in future research with larger sample sizes. The availability of a systemic epigenetic biomarker for obesity susceptibility may facilitate preventative medicine and clinical management of the disease early in life.


Analysis of differential DNA methylation regions (DMRs) was used to identify epigenetic associations with metabolic and dietary measures related to obesity with discordant twins.A weighted genome coexpression network analysis (WGCNA) was performed and identified modules of epigenetic sites that correlated with different metabolic and dietary measures.Observations demonstrate the feasibility of identifying systemic epigenetic biomarkers for obesity, which can be further investigated for clinical relevance in future research with larger sample sizes.The availability of a systemic epigenetic biomarker for obesity susceptibility may facilitate preventative medicine and clinical management of the disease early in life.


Assuntos
Epigênese Genética , Epigenoma , Humanos , Metilação de DNA , Mucosa Bucal , Gêmeos Monozigóticos/genética , Obesidade/genética , Estudo de Associação Genômica Ampla
4.
Sci Rep ; 13(1): 15378, 2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37717058

RESUMO

Treponeme-associated hoof disease (TAHD) is an emerging disease of elk (Cervus canadensis) in the U.S. Pacific West. Because environmental epigenetics is the primary molecular process that mediates environmental factor impacts on a host organism and disease, the role of epigenetics in TAHD etiology was examined. The current study was designed to examine potential effects of TAHD on systemic epigenetic modifications in infected elk over a range of TAHD lesion severity. Leg tendons that contain predominantly fibroblast connective tissue cells were used to isolate fibroblast cells for epigenetic analysis in unaffected and TAHD-positive male and female Roosevelt and Rocky Mountain elk. Differential DNA methylation regions (DMRs) between the unaffected and TAHD-positive elk were identified for both female and male elk. The presence of TAHD was associated with alteration of the connective tissue cell epigenetics, and DMR associated genes identified. Therefore, the infected elk were found to have a systemic epigenetic alteration that was associated with the disease, despite pathology being generally limited to feet. If the elk germline epigenetics is altered then generational transmission of susceptibility to TAHD may impact subsequent generations through epigenetic inheritance. This first study of epigenetic changes associated with disease in elk suggests that TAHD promotes a systemic effect on the elk epigenetics which could exert health impacts on the elk.


Assuntos
Cervos , Casco e Garras , Feminino , Masculino , Animais , Epigenoma , Epigênese Genética , Cervos/genética , Fibroblastos
5.
Mol Ther Methods Clin Dev ; 30: 350-366, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37637380

RESUMO

Neovascular age-related macular degeneration (nAMD) is a leading cause of blindness in the aging population, with vascular endothelial growth factor (VEGF) playing a key role. Treatment with recombinant anti-VEGFs is the current standard of care; however, it is only effective for 1-2 months at a time and requires re-administration. Gene therapy could pave the way for stable, long-term expression of therapeutic anti-VEGF with a single dose, reducing the frequency of treatment and potentially improving clinical outcomes. As such, we have developed OXB-203, a lentiviral-based gene therapy encoding the anti-VEGF protein aflibercept. Aflibercept derived from OXB-203 exhibited comparable in vitro binding characteristics to VEGF as recombinant aflibercept. Furthermore, its biological potency was demonstrated by the equivalent inhibition of VEGF-induced human umbilical vein endothelial cell (HUVEC) proliferation and tubule formation as recombinant aflibercept. In a rat choroidal neovascularization (CNV) model of nAMD, a single subretinal administration of OXB-203 reduced laser-induced CNV lesion areas analogous to an intravitreal bolus of recombinant aflibercept. Finally, in a head-to-head comparative study, aflibercept derived from OXB-203 was shown to be expressed at significantly higher levels in ocular tissues than from an AAV8-aflibercept vector following a single subretinal delivery to rats. These findings support the therapeutic potential of OXB-203 for the management of nAMD.

6.
J Biomed Inform ; 145: 104464, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37541406

RESUMO

OBJECTIVE: We explore the framing of literature-based discovery (LBD) as link prediction and graph embedding learning, with Alzheimer's Disease (AD) as our focus disease context. The key link prediction setting of prediction window length is specifically examined in the context of a time-sliced evaluation methodology. METHODS: We propose a four-stage approach to explore literature-based discovery for Alzheimer's Disease, creating and analyzing a knowledge graph tailored to the AD context, and predicting and evaluating new knowledge based on time-sliced link prediction. The first stage is to collect an AD-specific corpus. The second stage involves constructing an AD knowledge graph with identified AD-specific concepts and relations from the corpus. In the third stage, 20 pairs of training and testing datasets are constructed with the time-slicing methodology. Finally, we infer new knowledge with graph embedding-based link prediction methods. We compare different link prediction methods in this context. The impact of limiting prediction evaluation of LBD models in the context of short-term and longer-term knowledge evolution for Alzheimer's Disease is assessed. RESULTS: We constructed an AD corpus of over 16 k papers published in 1977-2021, and automatically annotated it with concepts and relations covering 11 AD-specific semantic entity types. The knowledge graph of Alzheimer's Disease derived from this resource consisted of ∼11 k nodes and ∼394 k edges, among which 34% were genotype-phenotype relationships, 57% were genotype-genotype relationships, and 9% were phenotype-phenotype relationships. A Structural Deep Network Embedding (SDNE) model consistently showed the best performance in terms of returning the most confident set of link predictions as time progresses over 20 years. A huge improvement in model performance was observed when changing the link prediction evaluation setting to consider a more distant future, reflecting the time required for knowledge accumulation. CONCLUSION: Neural network graph-embedding link prediction methods show promise for the literature-based discovery context, although the prediction setting is extremely challenging, with graph densities of less than 1%. Varying prediction window length on the time-sliced evaluation methodology leads to hugely different results and interpretations of LBD studies. Our approach can be generalized to enable knowledge discovery for other diseases. AVAILABILITY: Code, AD ontology, and data are available at https://github.com/READ-BioMed/readbiomed-lbd.


Assuntos
Doença de Alzheimer , Descoberta do Conhecimento , Humanos , Descoberta do Conhecimento/métodos , Doença de Alzheimer/diagnóstico , Redes Neurais de Computação , Aprendizagem , Fenótipo
7.
Neuroimage ; 278: 120279, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37454702

RESUMO

The recent biological redefinition of Alzheimer's Disease (AD) has spurred the development of statistical models that relate changes in biomarkers with neurodegeneration and worsening condition linked to AD. The ability to measure such changes may facilitate earlier diagnoses for affected individuals and help in monitoring the evolution of their condition. Amongst such statistical tools, disease progression models (DPMs) are quantitative, data-driven methods that specifically attempt to describe the temporal dynamics of biomarkers relevant to AD. Due to the heterogeneous nature of this disease, with patients of similar age experiencing different AD-related changes, a challenge facing longitudinal mixed-effects-based DPMs is the estimation of patient-realigning time-shifts. These time-shifts are indispensable for meaningful biomarker modelling, but may impact fitting time or vary with missing data in jointly estimated models. In this work, we estimate an individual's progression through Alzheimer's disease by combining multiple biomarkers into a single value using a probabilistic formulation of principal components analysis. Our results show that this variable, which summarises AD through observable biomarkers, is remarkably similar to jointly estimated time-shifts when we compute our scores for the baseline visit, on cross-sectional data from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Reproducing the expected properties of clinical datasets, we confirm that estimated scores are robust to missing data or unavailable biomarkers. In addition to cross-sectional insights, we can model the latent variable as an individual progression score by repeating estimations at follow-up examinations and refining long-term estimates as more data is gathered, which would be ideal in a clinical setting. Finally, we verify that our score can be used as a pseudo-temporal scale instead of age to ignore some patient heterogeneity in cohort data and highlight the general trend in expected biomarker evolution in affected individuals.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico por imagem , Estudos Transversais , Neuroimagem/métodos , Biomarcadores , Progressão da Doença , Imageamento por Ressonância Magnética
8.
Environ Epigenet ; 9(1): dvad003, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346491

RESUMO

Germline transmission of epigenetic information is a critical component of epigenetic inheritance. Previous studies have suggested that an erasure of DNA methylation is required to develop stem cells in the morula embryo. An exception involves imprinted genes that escape this DNA methylation erasure. Transgenerational differential DNA methylation regions (DMRs) have been speculated to be imprinted-like and escape this erasure. The current study was designed to assess if morula embryos escape the erasure of dichlorodiphenyltrichloroethane-induced transgenerational sperm DMR methylation. Observations demonstrate that the majority (98%) of transgenerational sperm DMR sites retain DNA methylation and are not erased, so appearing similar to imprinted-like sites. Interestingly, observations also demonstrate that the majority of low-density CpG genomic sites had a significant increase in DNA methylation in the morula embryo compared to sperm. This is in contrast to the previously observed DNA methylation erasure of higher-density CpG sites. The general erasure of DNA methylation during embryogenesis appears applicable to high-density DNA methylation sites (e.g. CpG islands) but neither to transgenerational DMR methylation sites nor to low-density CpG deserts, which constitute the vast majority of the genome's DNA methylation sites. The role of epigenetics during embryogenesis appears more dynamic than the simple erasure of DNA methylation.

9.
SLAS Discov ; 28(4): 170-179, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36933698

RESUMO

A rare coding variant in PLCγ2 (P522R) expressed in microglia induces a mild activation of enzymatic activity when compared to wild-type. This mutation is reported to be protective against the cognitive decline associated with late-onset Alzheimer's disease (LOAD) and therefore, activation of wild-type PLCγ2 has been suggested as a potential therapeutic target for the prevention and treatment of LOAD. Additionally, PLCγ2 has been associated with other diseases such as cancer and some autoimmune disorders where mutations with much greater increases in PLCγ2 activity have been identified. Here, pharmacological inhibition may provide a therapeutic effect. In order to facilitate our investigation of the activity of PLCγ2, we developed an optimized fluorogenic substrate to monitor enzymatic activity in aqueous solution. This was accomplished by first exploring the spectral properties of various "turn-on" fluorophores. The most promising turn-on fluorophore was incorporated into a water-soluble PLCγ2 reporter substrate, which we named C8CF3-coumarin. The ability of PLCγ2 to enzymatically process C8CF3-coumarin was confirmed, and the kinetics of the reaction were determined. Reaction conditions were optimized to identify small molecule activators, and a pilot screen of the Library of Pharmacologically Active Compounds 1280 (LOPAC1280) was performed with the goal of identifying small molecule activators of PLCγ2. The optimized screening conditions allowed identification of potential PLCγ2 activators and inhibitors, thus demonstrating the feasibility of this approach for high-throughput screening.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Corantes Fluorescentes , Fosfolipase C gama/genética , Ensaios de Triagem em Larga Escala , Cumarínicos
10.
Sci Rep ; 13(1): 555, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631595

RESUMO

Abnormal penile foreskin development in hypospadias is the most frequent genital malformation in male children, which has increased dramatically in recent decades. A number of environmental factors have been shown to be associated with hypospadias development. The current study investigated the role of epigenetics in the etiology of hypospadias and compared mild (distal), moderate (mid shaft), and severe (proximal) hypospadias. Penile foreskin samples were collected from hypospadias and non-hypospadias individuals to identify alterations in DNA methylation associated with hypospadias. Dramatic numbers of differential DNA methylation regions (DMRs) were observed in the mild hypospadias, with reduced numbers in moderate and low numbers in severe hypospadias. Atresia (cell loss) of the principal foreskin fibroblast is suspected to be a component of the disease etiology. A genome-wide (> 95%) epigenetic analysis was used and the genomic features of the DMRs identified. The DMR associated genes identified a number of novel hypospadias associated genes and pathways, as well as genes and networks known to be involved in hypospadias etiology. Observations demonstrate altered DNA methylation sites in penile foreskin is a component of hypospadias etiology. In addition, a potential role of environmental epigenetics and epigenetic inheritance in hypospadias disease etiology is suggested.


Assuntos
Prepúcio do Pênis , Hipospadia , Criança , Humanos , Masculino , Prepúcio do Pênis/metabolismo , Metilação de DNA , Hipospadia/genética , Hipospadia/metabolismo , Epigênese Genética , Genômica
11.
J Endourol ; 37(4): 453-461, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36585860

RESUMO

Introduction/Background: There are increasing reports of serious complications related to the air pyelography technique, which raise concerns about the safety of room air (RA) injection into the renal collecting system. Carbon dioxide (CO2) is much more soluble in blood than nitrogen and oxygen and thus considerably less likely to cause gas emboli. Iodinated contrast medium (ICM) is expensive, and supplies may not be as reliable as previously assumed. CO2 pyelography (CO2-P) techniques using standard fluoroscopy and digital subtraction fluoroscopy (CO2 digital subtraction pyelography [CO2-DSP]) are described. Materials and Methods: During the endourologic stone cases, 15 to 20 mL of CO2 gas was typically injected into the renal pelvis through a catheter or sheath. Imaging was usually obtained with endovascular CO2 digital subtraction angiography settings using either a traditional fluoroscopy system (TFS) or robotic arm multiplanar fluoroscopy system (RMPFS) (Artis Zeego Care+Clear®; Siemens). Results: CO2-P was performed in 22 endoscopic stone treatment cases between March 2021 and August 2022, primarily using digital subtraction settings in 20 cases. CO2-DSP overall provided higher quality images of the renal pelvis and collecting system than CO2-P, but with a relatively higher radiation dose. Following a quality intervention, fluoroscopy doses for CO2-DSP cases were decreased by 81% overall. The use of CO2-P avoided fluoroscopic or intraoperative CT (ICT) artifacts seen with intraluminal ICM. Conclusions: CO2-P allows the urologist to obtain imaging of the renal collecting system without ICM and with much lower risk of air embolism compared with RA pyelography. CO2 is a nearly cost-free alternative to ICM. Because CO2 is widely available and the technique is easy to perform, we propose that CO2-P should be favored over traditional air pyelography to improve patient safety.


Assuntos
Dióxido de Carbono , Meios de Contraste , Urografia , Humanos , Meios de Contraste/efeitos adversos , Endoscopia , Fluoroscopia
12.
Am J Respir Crit Care Med ; 207(3): 283-299, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36047984

RESUMO

Rationale: Although type II alveolar epithelial cells (AEC2s) are chronically injured in idiopathic pulmonary fibrosis (IPF), they contribute to epithelial regeneration in IPF. Objectives: We hypothesized that Notch signaling may contribute to AEC2 proliferation, dedifferentiation characterized by loss of surfactant processing machinery, and lung fibrosis in IPF. Methods: We applied microarray analysis, kinome profiling, flow cytometry, immunofluorescence analysis, western blotting, quantitative PCR, and proliferation and surface activity analysis to study epithelial differentiation, proliferation, and matrix deposition in vitro (AEC2 lines, primary murine/human AEC2s), ex vivo (human IPF-derived precision-cut lung slices), and in vivo (bleomycin and pepstatin application, Notch1 [Notch receptor 1] intracellular domain overexpression). Measurements and Main Results: We document here extensive SP-B and -C (surfactant protein-B and -C) processing defects in IPF AEC2s, due to loss of Napsin A, resulting in increased intra-alveolar surface tension and alveolar collapse and induction of endoplasmic reticulum stress in AEC2s. In vivo pharmacological inhibition of Napsin A results in the development of AEC2 injury and overt lung fibrosis. We also demonstrate that Notch1 signaling is already activated early in IPF and determines AEC2 fate by inhibiting differentiation (reduced lamellar body compartment, reduced capacity to process hydrophobic SP) and by causing increased epithelial proliferation and development of lung fibrosis, putatively via altered JAK (Janus kinase)/Stat (signal transducer and activator of transcription) signaling in AEC2s. Conversely, inhibition of Notch signaling in IPF-derived precision-cut lung slices improved the surfactant processing capacity of AEC2s and reversed fibrosis. Conclusions: Notch1 is a central regulator of AEC2 fate in IPF. It induces alveolar epithelial proliferation and loss of Napsin A and of surfactant proprotein processing, and it contributes to fibroproliferation.


Assuntos
Fibrose Pulmonar Idiopática , Surfactantes Pulmonares , Humanos , Camundongos , Animais , Tensoativos , Pulmão , Células Epiteliais Alveolares , Bleomicina , Receptor Notch1
13.
Environ Epigenet ; 9(1): dvad006, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162685

RESUMO

Three successive multiple generations of rats were exposed to different toxicants and then bred to the transgenerational F5 generation to assess the impacts of multiple generation different exposures. The current study examines the actions of the agricultural fungicide vinclozolin on the F0 generation, followed by jet fuel hydrocarbon mixture exposure of the F1 generation, and then pesticide dichlorodiphenyltrichloroethane on the F2 generation gestating females. The subsequent F3 and F4 generations and F5 transgenerational generation were obtained and F1-F5 generations examined for male sperm epigenetic alterations and pathology in males and females. Significant impacts on the male sperm differential DNA methylation regions were observed. The F3-F5 generations were similar in ∼50% of the DNA methylation regions. The pathology of each generation was assessed in the testis, ovary, kidney, and prostate, as well as the presence of obesity and tumors. The pathology used a newly developed Deep Learning, artificial intelligence-based histopathology analysis. Observations demonstrated compounded disease impacts in obesity and metabolic parameters, but other pathologies plateaued with smaller increases at the F5 transgenerational generation. Observations demonstrate that multiple generational exposures, which occur in human populations, appear to increase epigenetic impacts and disease susceptibility.

14.
iScience ; 25(12): 105570, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36465105

RESUMO

The current study was designed to use a rodent model to determine if exposure to the chemotherapy drug ifosfamide during puberty can induce altered phenotypes and disease in the grand-offspring of exposed individuals through epigenetic transgenerational inheritance. Pathologies such as delayed pubertal onset, kidney disease, and multiple pathologies were observed to be significantly more frequent in the F1 generation offspring of ifosfamide lineage females. The F2 generation grand-offspring ifosfamide lineage males had transgenerational pathology phenotypes of early pubertal onset and reduced testis pathology. Reduced levels of anxiety were observed in both males and females in the transgenerational F2 generation grand-offspring. Differential DNA methylated regions (DMRs) in chemotherapy lineage sperm in the F1 and F2 generations were identified. Therefore, chemotherapy exposure impacts pathology susceptibility in subsequent generations. Observations highlight the importance that prior to chemotherapy, individuals need to consider cryopreservation of germ cells as a precautionary measure if they have children.

15.
Sci Rep ; 12(1): 20166, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36424439

RESUMO

An epigenome-wide association study (EWAS) was performed on buccal cells from monozygotic-twins (MZ) reared together as children, but who live apart as adults. Cohorts of twin pairs were used to investigate associations between neighborhood walkability and objectively measured physical activity (PA) levels. Due to dramatic cellular epigenetic sex differences, male and female MZ twin pairs were analyzed separately to identify differential DNA methylation regions (DMRs). A priori comparisons were made on MZ twin pairs discordant on body mass index (BMI), PA levels, and neighborhood walkability. In addition to direct comparative analysis to identify specific DMRs, a weighted genome coexpression network analysis (WGCNA) was performed to identify DNA methylation sites associated with the physiological traits of interest. The pairs discordant in PA levels had epigenetic alterations that correlated with reduced metabolic parameters (i.e., BMI and waist circumference). The DNA methylation sites are associated with over fifty genes previously found to be specific to vigorous PA, metabolic risk factors, and sex. Combined observations demonstrate that behavioral factors, such as physical activity, appear to promote systemic epigenetic alterations that impact metabolic risk factors. The epigenetic DNA methylation sites and associated genes identified provide insight into PA impacts on metabolic parameters and the etiology of obesity.


Assuntos
Epigenoma , Gêmeos Monozigóticos , Adulto , Criança , Feminino , Masculino , Humanos , Gêmeos Monozigóticos/genética , Metilação de DNA , Mucosa Bucal , Exercício Físico , DNA
16.
Angew Chem Int Ed Engl ; 61(42): e202210671, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-35983847

RESUMO

The {Ru(NO)2 }10 dinitrosylruthenium complex [Ru(NO)2 (PPh3 )2 ] (1) shows photo-induced linkage isomerism (PLI) of a special kind: the two NO ligands switch, on photo-excitation, synchronously from the ground state (GS) with two almost linear RuNO functions to a metastable state (MS) which persists up to 230 K and can be populated to ≈50 %. The MS was experimentally characterised by photo-crystallography, IR spectroscopy and DS-calorimetry as a double-bent variant of the double-linear GS. The experimental results are confirmed by computation which unravels the GS/MS transition as a disrotatory synchronous 50° turn of the two nitrosyl ligands. Although 1 shows the usual redshift of the N-O stretch on bending the MNO unit, there is no increased charge transfer from Ru to NO along the GS-to-MS path. In terms of the effective-oxidation-state (EOS) method, both isomers of 1 and the transition state are Ru-II (NO+ )2 species.


Assuntos
Rutênio , Cristalografia por Raios X , Isomerismo , Ligantes , Óxido Nítrico/química , Rutênio/química
17.
Sci Rep ; 12(1): 5452, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440735

RESUMO

Environmental toxicants have been shown to promote the epigenetic transgenerational inheritance of disease through exposure specific epigenetic alterations in the germline. The current study examines the actions of hydrocarbon jet fuel, dioxin, pesticides (permethrin and methoxychlor), plastics, and herbicides (glyphosate and atrazine) in the promotion of transgenerational disease in the great grand-offspring rats that correlates with specific disease associated differential DNA methylation regions (DMRs). The transgenerational disease observed was similar for all exposures and includes pathologies of the kidney, prostate, and testis, pubertal abnormalities, and obesity. The disease specific DMRs in sperm were exposure specific for each pathology with negligible overlap. Therefore, for each disease the DMRs and associated genes were distinct for each exposure generational lineage. Observations suggest a large number of DMRs and associated genes are involved in a specific pathology, and various environmental exposures influence unique subsets of DMRs and genes to promote the transgenerational developmental origins of disease susceptibility later in life. A novel multiscale systems biology basis of disease etiology is proposed involving an integration of environmental epigenetics, genetics and generational toxicology.


Assuntos
Metilação de DNA , Epigênese Genética , Animais , Padrões de Herança/genética , Masculino , Ratos , Ratos Sprague-Dawley , Espermatozoides/metabolismo
18.
Sci Rep ; 12(1): 3361, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35232984

RESUMO

Preterm birth is the major cause of newborn and infant mortality affecting nearly one in every ten live births. The current study was designed to develop an epigenetic biomarker for susceptibility of preterm birth using buccal cells from the mother, father, and child (triads). An epigenome-wide association study (EWAS) was used to identify differential DNA methylation regions (DMRs) using a comparison of control term birth versus preterm birth triads. Epigenetic DMR associations with preterm birth were identified for both the mother and father that were distinct and suggest potential epigenetic contributions from both parents. The mother (165 DMRs) and female child (136 DMRs) at p < 1e-04 had the highest number of DMRs and were highly similar suggesting potential epigenetic inheritance of the epimutations. The male child had negligible DMR associations. The DMR associated genes for each group involve previously identified preterm birth associated genes. Observations identify a potential paternal germline contribution for preterm birth and identify the potential epigenetic inheritance of preterm birth susceptibility for the female child later in life. Although expanded clinical trials and preconception trials are required to optimize the potential epigenetic biomarkers, such epigenetic biomarkers may allow preventative medicine strategies to reduce the incidence of preterm birth.


Assuntos
Nascimento Prematuro , Biomarcadores/metabolismo , Criança , DNA , Metilação de DNA , Epigênese Genética , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Mucosa Bucal/metabolismo , Nascimento Prematuro/genética
19.
iScience ; 25(2): 103786, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35146397

RESUMO

Because epigenetics is a critical component for gene expression, the hypothesis was tested that DNA methylation alterations are dynamic and continually change throughout gametogenesis to generate the mature sperm. Developmental alterations and stage-specific DNA methylation during gametogenesis from primordial germ cells (PGCs) to mature sperm are investigated. Individual developmental stage germ cells were isolated and analyzed for differential DNA methylation regions (DMRs). The number of DMRs was highest in the first three comparisons with mature PGCs, prospermatogonia, and spermatogonia. The most statistically significant DMRs were present at all stages of development and had variations involving both increases or decreases in DNA methylation. DMR-associated genes were identified and correlated with gene functional categories, pathways, and cellular processes. Observations identified a dynamic cascade of epigenetic changes during development that is dramatic during the early developmental stages. Complex epigenetic alterations are required to regulate genome biology and gene expression during gametogenesis.

20.
Respiration ; 101(3): 253-261, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34628406

RESUMO

BACKGROUND: The overall incidence of interstitial lung disease and disease-associated mortality have been found on the rise. Hospitalizations for interstitial lung disease are typically caused by airway infection or the acute exacerbation of the underlying disease. Seasonal variance in ambient air pollution has recently been linked to exacerbation and mortality. We sought to examine the seasonal pattern of hospitalizations in Germany, use of mechanical ventilation, and in-hospital mortality on a year-by-year basis to identify their overall trend and to characterize seasonal patterns. METHODS: The national in-patient database of the federal statistical office of Germany was searched for cases of interstitial lung disease. RESULTS: A total of 130,366 hospitalizations for ILD occurred from 2005 to 2015. Time series data were examined for seasonality using X-11 statistics. The incidence of hospitalizations, mechanical ventilation, and in-hospital mortality show clear seasonal peaks in the cold season. The observed seasonality cannot be attributed to the variance of selected comorbidities. Also, there is a significant overall upward trend regarding hospitalization counts, especially in the use of non-invasive ventilation. CONCLUSION: Time series analysis of in-hospital data shows an ILD-related rise of hospitalizations, in-hospital mortality, and non-invasive ventilation. This emphasizes a growing importance of interstitial lung diseases for health-care systems. Strong seasonality is seen in these variables. Data therefore support previous studies of ILD exacerbation. More research on infectious causes and environmental factors is warranted.


Assuntos
Doenças Pulmonares Intersticiais , Progressão da Doença , Mortalidade Hospitalar , Hospitalização , Humanos , Doenças Pulmonares Intersticiais/epidemiologia , Estudos Retrospectivos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...