Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Nutrients ; 16(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474865

RESUMO

Obesity entails metabolic alterations across multiple organs, highlighting the role of inter-organ communication in its pathogenesis. Extracellular vesicles (EVs) are communication agents in physiological and pathological conditions, and although they have been associated with obesity comorbidities, their protein cargo in this context remains largely unknown. To decipher the messages encapsulated in EVs, we isolated plasma-derived EVs from a diet-induced obese murine model. Obese plasma EVs exhibited a decline in protein diversity while control EVs revealed significant enrichment in protein-folding functions, highlighting the importance of proper folding in maintaining metabolic homeostasis. Previously, we revealed that gut-derived EVs' proteome holds particular significance in obesity. Here, we compared plasma and gut EVs and identified four proteins exclusively present in the control state of both EVs, revealing the potential for a non-invasive assessment of gut health by analyzing blood-derived EVs. Given the relevance of post-translational modifications (PTMs), we observed a shift in chromatin-related proteins from glycation to acetylation in obese gut EVs, suggesting a regulatory mechanism targeting DNA transcription during obesity. This study provides valuable insights into novel roles of EVs and protein PTMs in the intricate mechanisms underlying obesity, shedding light on potential biomarkers and pathways for future research.


Assuntos
Vesículas Extracelulares , Proteômica , Humanos , Camundongos , Animais , Obesidade/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Vesículas Extracelulares/metabolismo
2.
Int J Mol Sci ; 25(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38473885

RESUMO

Acute myocardial infarction (AMI) is a major cause of mortality and morbidity worldwide, yet biomarkers for AMI in the short- or medium-term are lacking. We apply the discordant twin pair design, reducing genetic and environmental confounding, by linking nationwide registry data on AMI diagnoses to a survey of 12,349 twins, thereby identifying 39 twin pairs (48-79 years) discordant for their first-ever AMI within three years after blood sampling. Mass spectrometry of blood plasma identified 715 proteins. Among 363 proteins with a call rate > 50%, imputation and stratified Cox regression analysis revealed seven significant proteins (FDR < 0.05): FGD6, MCAM, and PIK3CB reflected an increased level in AMI twins relative to their non-AMI co-twins (HR > 1), while LBP, IGHV3-15, C1RL, and APOC4 reflected a decreased level in AMI twins relative to their non-AMI co-twins (HR < 1). Additional 50 proteins were nominally significant (p < 0.05), and bioinformatics analyses of all 57 proteins revealed biology within hemostasis, coagulation cascades, the immune system, and the extracellular matrix. A protein-protein-interaction network revealed Fibronectin 1 as a central hub. Finally, technical validation confirmed MCAM, LBP, C1RL, and APOC3. We put forward novel biomarkers for incident AMI, a part of the proteome field where markers are surprisingly rare and where additional studies are highly needed.


Assuntos
Infarto do Miocárdio , Proteoma , Humanos , Gêmeos , Biomarcadores , Espectrometria de Massas
3.
Eur J Oral Sci ; 131(5-6): e12952, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664892

RESUMO

Dental follicle cells (DFCs) are osteogenic progenitor cells and are well suited for molecular studies of differentiation of alveolar osteoblasts. A recent study examined the metabolism in DFCs during osteogenic differentiation and showed that energy metabolism is increased after 14 days of differentiation (mid phase). However, previous studies have examined proteomes at early (2 h, 24 h) or very late (28 days) stages of differentiation, but not during the phase of increased metabolic activity. In this study, we examined the phosphoproteome at the mid phase (14 days) of osteogenic differentiation. Analysis of DFC phosphoproteomes showed that during this phase of osteogenic differentiation, proteins that are part of signal transduction are significantly regulated. Proteins involved in the regulation of the cytoskeleton and apoptosis were also increased in expression. As osteogenic differentiation induced oxidative stress and apoptosis in DFCs, the oxidative stress defense protein, catalase, was also upregulated during osteogenic differentiation, which supports the biomineralization of DFCs. In summary, this study revealed that during the middle phase (14 days) of osteogenic differentiation, processes in DFCs related to the control of cell organization, apoptosis, and oxidative stress are regulated.


Assuntos
Osteogênese , Proteoma , Humanos , Osteogênese/fisiologia , Saco Dentário/metabolismo , Diferenciação Celular/fisiologia , Células-Tronco , Células Cultivadas
4.
Sci Rep ; 13(1): 14401, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658225

RESUMO

Cellular heterogeneity represents a major challenge for regenerative treatment using freshly isolated Adipose Derived Regenerative Cells (ADRCs). Emerging data suggest superior efficacy of ADRCs as compared to the ex vivo expanded and more homogeneous ADRCs (= ASCs) for indications involving (micro)vascular deficiency, however, it remains unknown which ADRC cell subtypes account for the improvement. Surprisingly, we found regarding erectile dysfunction (ED) that the number of injected CD31+ ADRCs correlated positively with erectile function 12 months after one bolus of autologous ADRCs. Comprehensive in vitro and ex vivo analyses confirmed superior pro-angiogenic and paracrine effects of human CD31+ enriched ADRCs compared to the corresponding CD31- and parent ADRCs. When CD31+, CD31- and ADRCs were co-cultured in aortic ring- and corpus cavernous tube formation assays, the CD31+ ADRCs induced significantly higher tube development. This effect was corroborated using conditioned medium (CM), while quantitative mass spectrometric analysis suggested that this is likely explained by secretory pro-angiogenic proteins including DKK3, ANGPT2, ANAX2 and VIM, all enriched in CD31+ ADRC CM. Single-cell RNA sequencing showed that transcripts of the upregulated and secreted proteins were present in 9 endothelial ADRC subsets including endothelial progenitor cells in the heterogenous non-cultured ADRCs. Our data suggest that the vascular benefit of using ADRCs in regenerative medicine is dictated by CD31+ ADRCs.


Assuntos
Máculas Acústicas , Líquidos Corporais , Humanos , Masculino , Proteínas Angiogênicas , Bioensaio , Transporte Biológico , Meios de Cultivo Condicionados
5.
Biomedicines ; 11(5)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239088

RESUMO

Inflammation and elastin degradation are key hallmarks in the pathogenesis of abdominal aortic aneurysms (AAAs). It has been acknowledged that activation of alpha7 nicotinic acetylcholine receptors (α7nAChRs) attenuates inflammation, termed the cholinergic anti-inflammatory pathway (CAP). Thus, we hypothesize that low-dose nicotine impairs the progression of elastase-induced AAAs in rats by exerting anti-inflammatory and anti-oxidative stress properties. Male Sprague-Dawley rats underwent surgical AAA induction with intraluminal elastase infusion. We compared vehicle rats with rats treated with nicotine (1.25 mg/kg/day), and aneurysm progression was monitored by weekly ultrasound images for 28 days. Nicotine treatment significantly promoted AAA progression (p = 0.031). Additionally, gelatin zymography demonstrated that nicotine significantly reduced pro-matrix metalloproteinase (pro-MMP) 2 (p = 0.029) and MMP9 (p = 0.030) activity in aneurysmal tissue. No significant difference was found in the elastin content or the score of elastin degradation between the groups. Neither infiltrating neutrophils nor macrophages, nor aneurysmal messenger RNA (mRNA) levels of pro- or anti-inflammatory cytokines, differed between the vehicle and nicotine groups. Finally, no difference in mRNA levels of markers for anti-oxidative stress or the vascular smooth muscle cells' contractile phenotype was observed. However, proteomics analyses of non-aneurysmal abdominal aortas revealed that nicotine decreased myristoylated alanine-rich C-kinase substrate and proteins, in ontology terms, inflammatory response and reactive oxygen species, and in contradiction to augmented AAAs. In conclusion, nicotine at a dose of 1.25 mg/kg/day augments AAA expansion in this elastase AAA model. These results do not support the use of low-dose nicotine administration for the prevention of AAA progression.

6.
Ugeskr Laeger ; 185(1)2023 01 02.
Artigo em Dinamarquês | MEDLINE | ID: mdl-36629291

RESUMO

Amyloidosis is a severe disease caused by protein misfolding and deposition in tissues and organs. Thirty-eight different proteins are known to be amyloidogenic. Amyloidosis is categorized into inherited or acquired, and systemic or localized. Light-chain (AL)- and transthyretin (ATTR) amyloidosis are the two most common subtypes. Awareness, early diagnosis, accurate subtyping and relevant treatment are crucial for the management. Novel therapies of systemic AL and ATTR amyloidosis have considerably improved outcome and survival. The aim of this review is to increase awareness and knowledge on diagnosing amyloidosis.


Assuntos
Amiloidose , Humanos , Amiloidose/diagnóstico , Amiloidose/terapia , Amiloidose/metabolismo
8.
J Proteome Res ; 22(5): 1385-1393, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35700353

RESUMO

Atherosclerotic cardiovascular disease is the leading cause of death worldwide. For decades, mouse modeling of atherosclerosis has been the mainstay for preclinical testing of genetic and pharmacological intervention. Mouse models of atherosclerosis depend on supraphysiological levels of circulating cholesterol carried in lipoprotein particles. Lipoprotein particles vary in atherogenicity, and it is critical to monitor lipoprotein levels during preclinical interventions in mice. Unfortunately, the small plasma volumes typically harvested during preclinical experiments limit analyses to measuring total cholesterol and triglyceride levels. Here we developed a high-throughput, low-cost targeted multiple reaction monitoring (MRM) stable isotope dilution (SID) mass spectrometry assay for simultaneous relative quantification of nine apolipoproteins using a few microliters of mouse plasma. We applied the MRM assay to investigate the plasma apolipoproteome of two atherosclerosis models: the widely used ApoE knockout model and the emerging recombinant adeno-associated virus-mediated hepatic Pcsk9 overexpression model. By applying the assay on size-exclusion chromatography-separated plasma pools, we provide in-depth characterization of apolipoprotein distribution across lipoprotein species in these models, and finally, we use the assay to quantify apolipoprotein deposition in mouse atherosclerotic plaques. Taken together, we report development and application of an MRM assay that can be adopted by fellow researchers to monitor the mouse plasma apolipoproteome during preclinical investigations.


Assuntos
Aterosclerose , Pró-Proteína Convertase 9 , Camundongos , Animais , Colesterol , Apolipoproteínas E/genética , Apolipoproteínas , Espectrometria de Massas , Camundongos Knockout
9.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362114

RESUMO

Diffuse large B cell lymphoma (DLBCL) is an aggressive B cell lymphoma characterized by a heterogeneous behavior and in need of more accurate biological characterization monitoring and prognostic tools. Extracellular vesicles are secreted by all cell types and are currently established to some extent as representatives of the cell of origin. The present study characterized and evaluated the diagnostic and prognostic potential of plasma extracellular vesicles (EVs) proteome in DLBCL by using state-of-the-art mass spectrometry. The EV proteome is strongly affected by DLBCL status, with multiple proteins uniquely identified in the plasma of DLBCL. A proof-of-concept classifier resulted in highly accurate classification with a sensitivity and specificity of 1 when tested on the holdout test data set. On the other hand, no proteins were identified to correlate with non-germinal center B-cell like (non-GCB) or GCB subtypes to a significant degree after correction for multiple testing. However, functional analysis suggested that antigen binding is regulated when comparing non-GCB and GCB. Survival analysis based on protein quantitative values and clinical parameters identified multiple EV proteins as significantly correlated to survival. In conclusion, the plasma extracellular vesicle proteome identifies DLBCL cancer patients from healthy donors and contains potential EV protein markers for prediction of survival.


Assuntos
Vesículas Extracelulares , Linfoma Difuso de Grandes Células B , Humanos , Proteoma , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/patologia , Vesículas Extracelulares/patologia
10.
Front Cardiovasc Med ; 9: 942342, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186984

RESUMO

Background: Tumor necrosis factor (TNF) is pathologically elevated in human abdominal aortic aneurysms (AAA). Non-selective TNF inhibition-based therapeutics are approved for human use but have been linked to several side effects. Compounds that target the proinflammatory soluble form of TNF (solTNF) but preserve the immunomodulatory capabilities of the transmembrane form of TNF (tmTNF) may prevent these side effects. We hypothesize that inhibition of solTNF signaling prevents AAA expansion. Methods: The effect of the selective solTNF inhibitor, XPro1595, and the non-selective TNF inhibitor, Etanercept (ETN) was examined in porcine pancreatic elastase (PPE) induced AAA mice, and findings with XPro1595 was confirmed in angiotensin II (ANGII) induced AAA in hyperlipidemic apolipoprotein E (Apoe) -/- mice. Results: XPro1595 treatment significantly reduced AAA expansion in both models, and a similar trend (p = 0.06) was observed in PPE-induced AAA in ETN-treated mice. In the PPE aneurysm wall, XPro1595 improved elastin integrity scores. In aneurysms, mean TNFR1 levels reduced non-significantly (p = 0.07) by 50% after TNF inhibition, but the histological location in murine AAAs was unaffected and similar to that in human AAAs. Semi-quantification of infiltrating leucocytes, macrophages, T-cells, and neutrophils in the aneurysm wall were unaffected by TNF inhibition. XPro1595 increased systemic TNF levels, while ETN increased systemic IL-10 levels. In ANGII-induced AAA mice, XPro1595 increased systemic TNF and IL-5 levels. In early AAA development, proteomic analyses revealed that XPro1595 significantly upregulated ontology terms including "platelet aggregation" and "coagulation" related to the fibrinogen complex, from which several proteins were among the top regulated proteins. Downregulated ontology terms were associated with metabolic processes. Conclusion: In conclusion, selective inhibition of solTNF signaling reduced aneurysm expansion in mice, supporting its potential as an attractive treatment option for AAA patients.

11.
Cells ; 11(18)2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36139375

RESUMO

(1) Background: Pancreatic ductal adenocarcinoma (PDAC) is expected to be the second-leading cause of cancer deaths by 2030. Imaging techniques are the standard for monitoring the therapy response in PDAC, but these techniques have considerable limits, including delayed disease progression detection and difficulty in distinguishing benign from malignant lesions. Extracellular vesicle (EV) liquid biopsy is an emerging diagnosis modality. Nonetheless, the majority of research for EV-based diagnosis relies on point analyses of EVs at specified times, while longitudinal EV population studies before and during therapeutic interventions remain largely unexplored. (2) Methods: We analyzed plasma EV protein composition at diagnosis and throughout PDAC therapy. (3) Results: We found that IgG is linked with the diagnosis of PDAC and the patient's response to therapy, and that the IgG+ EV population increases with disease progression and reduces with treatment response. Importantly, this covers PDAC patients devoid of the standard PDAC seric marker CA19.9 expression. We also observed that IgG is bound to EVs via the tumor antigen MAGE B1, and that this is independent of the patient's inflammatory condition and IgG seric levels. (4) Conclusions: We here propose that a population analysis of IgG+ EVs in PDAC plasma represents a novel method to supplement the monitoring of the PDAC treatment response.


Assuntos
Carcinoma Ductal Pancreático , Vesículas Extracelulares , Neoplasias Pancreáticas , Antígenos de Neoplasias , Biomarcadores Tumorais , Carcinoma Ductal Pancreático/terapia , Progressão da Doença , Vesículas Extracelulares/patologia , Humanos , Imunoglobulina G , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas
12.
Front Immunol ; 13: 909880, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874665

RESUMO

Multiple myeloma (MM), the third most frequent hematological cancer worldwide, is characterized by the proliferation of neoplastic plasma cells in the bone marrow (BM). One of the hallmarks of MM is a permissive BM microenvironment. Increasing evidence suggests that cell-to-cell communication between myeloma and immune cells via tumor cell-derived extracellular vesicles (EV) plays a key role in the pathogenesis of MM. Hence, we aimed to explore BM immune alterations induced by MM-derived EV. For this, we inoculated immunocompetent BALB/cByJ mice with a myeloma cell line, MOPC315.BM, inducing a MM phenotype. Upon tumor establishment, characterization of the BM microenvironment revealed the expression of both activation and suppressive markers by lymphocytes, such as granzyme B and PD-1, respectively. In addition, conditioning of the animals with MOPC315.BM-derived EV, before transplantation of the MOPC315.BM tumor cells, did not anticipate the disease phenotype. However, it induced features of suppression in the BM milieu, such as an increase in PD-1 expression by CD4+ T cells. Overall, our findings reveal the involvement of MOPC315.BM-derived EV protein content as promoters of immune niche remodeling, strengthening the importance of assessing the mechanisms by which MM may impact the immune microenvironment.


Assuntos
Vesículas Extracelulares , Mieloma Múltiplo , Animais , Medula Óssea , Linhagem Celular Tumoral , Vesículas Extracelulares/metabolismo , Camundongos , Receptor de Morte Celular Programada 1/metabolismo , Microambiente Tumoral
13.
Front Oncol ; 12: 860849, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35800053

RESUMO

Multiple myeloma (MM) is a hematological malignancy of clonal antibody-secreting plasma cells (PCs). MM diagnosis and risk stratification rely on bone marrow (BM) biopsy, an invasive procedure prone to sample bias. Liquid biopsies, such as extracellular vesicles (EV) in peripheral blood (PB), hold promise as new minimally invasive tools. Real-world studies analyzing patient-derived EV proteome are rare. Here, we characterized a small EV protein content from PB and BM samples in a cohort of 102 monoclonal gammopathies patients routinely followed in the clinic and 223 PB and 111 BM samples were included. We investigated whether EV protein and particle concentration could predict an MM patient prognosis. We found that a high EV protein/particle ratio, or EV cargo >0.6 µg/108 particles, is related to poorer survival and immune dysfunction. These results were supported at the protein level by mass spectrometry. We report a set of PB EV-proteins (PDIA3, C4BPA, BTN1A1, and TNFSF13) with a new biomarker potential for myeloma patient outcomes. The high proteomic similarity between PB and BM matched pairs supports the use of circulating EV as a counterpart of the BM EV proteome. Overall, we found that the EV protein content is related to patient outcomes, such as survival, immune dysfunction, and possibly treatment response.

14.
Arterioscler Thromb Vasc Biol ; 42(7): e217-e227, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35652755

RESUMO

BACKGROUND: An activated, proinflammatory endothelium is a key feature in the development of complications of obesity and type 2 diabetes and can be caused by insulin resistance in endothelial cells. METHODS: We analyzed primary human endothelial cells by RNA sequencing to discover novel insulin-regulated genes and used endothelial cell culture and animal models to characterize signaling through CXCR4 (C-X-C motif chemokine receptor 4) in endothelial cells. RESULTS: CXCR4 was one of the genes most potently regulated by insulin, and this was mediated by PI3K (phosphatidylinositol 3-kinase), likely through FoxO1, which bound to the CXCR4 promoter. CXCR4 mRNA in CD31+ cells was 77% higher in mice with diet-induced obesity compared with lean controls and 37% higher in db/db mice than db/+ controls, consistent with upregulation of CXCR4 in endothelial cell insulin resistance. SDF-1 (stromal cell-derived factor-1)-the ligand for CXCR4-increased leukocyte adhesion to cultured endothelial cells. This effect was lost after deletion of CXCR4 by gene editing while 80% of the increase was prevented by treatment of endothelial cells with insulin. In vivo microscopy of mesenteric venules showed an increase in leukocyte rolling after intravenous injection of SDF-1, but most of this response was prevented in transgenic mice with endothelial overexpression of IRS-1 (insulin receptor substrate-1). CONCLUSIONS: Endothelial cell insulin signaling limits leukocyte/endothelial cell interaction induced by SDF-1 through downregulation of CXCR4. Improving insulin signaling in endothelial cells or inhibiting endothelial CXCR4 may reduce immune cell recruitment to the vascular wall or tissue parenchyma in insulin resistance and thereby help prevent several vascular complications.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Receptores CXCR4/metabolismo , Animais , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Endoteliais/metabolismo , Endotélio/metabolismo , Insulina , Leucócitos/metabolismo , Camundongos , Obesidade/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptores CXCR4/genética
15.
Sci Adv ; 8(12): eabm1140, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35333565

RESUMO

Exosomes are extracellular vesicles of endosomal origin that are released by practically all cell types across metazoans. Exosomes are active vehicles of intercellular communication and can transfer lipids, RNAs, and proteins between different cells, tissues, or organs. Here, we describe a mechanism whereby proteins containing a KFERQ motif pentapeptide are loaded into a subpopulation of exosomes in a process that is dependent on the membrane protein LAMP2A. Moreover, we demonstrate that this mechanism is independent of the ESCRT machinery but dependent on HSC70, CD63, Alix, Syntenin-1, Rab31, and ceramides. We show that the master regulator of hypoxia HIF1A is loaded into exosomes by this mechanism to transport hypoxia signaling to normoxic cells. In addition, by tagging fluorescent proteins with KFERQ-like sequences, we were able to follow the interorgan transfer of exosomes. Our findings open new avenues for exosome engineering by allowing the loading of bioactive proteins by tagging them with KFERQ-like motifs.


Assuntos
Exossomos , Vesículas Extracelulares , Proteína 2 de Membrana Associada ao Lisossomo , Comunicação Celular , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Transdução de Sinais
16.
J Am Heart Assoc ; 11(7): e021814, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35289188

RESUMO

Background Mutations in ATP1A2 gene encoding the Na,K-ATPase α2 isoform are associated with familial hemiplegic migraine type 2. Migraine with aura is a known risk factor for heart disease. The Na,K-ATPase is important for cardiac function, but its role for heart disease remains unknown. We hypothesized that ATP1A2 is a susceptibility gene for heart disease and aimed to assess the underlying disease mechanism. Methods and Results Mice heterozygous for the familial hemiplegic migraine type 2-associated G301R mutation in the Atp1a2 gene (α2+/G301R mice) and matching wild-type controls were compared. Reduced expression of the Na,K-ATPase α2 isoform and increased expression of the α1 isoform were observed in hearts from α2+/G301R mice (Western blot). Left ventricular dilation and reduced ejection fraction were shown in hearts from 8-month-old α2+/G301R mice (cardiac magnetic resonance imaging), and this was associated with reduced nocturnal blood pressure (radiotelemetry). Cardiac function and blood pressure of 3-month-old α2+/G301R mice were similar to wild-type mice. Amplified Na,K-ATPase-dependent Src kinase/Ras/Erk1/2 (p44/42 mitogen-activated protein kinase) signaling was observed in hearts from 8-month-old α2+/G301R mice, and this was associated with mitochondrial uncoupling (respirometry), increased oxidative stress (malondialdehyde measurements), and a heart failure-associated metabolic shift (hyperpolarized magnetic resonance). Mitochondrial membrane potential (5,5´,6,6´-tetrachloro-1,1´,3,3´-tetraethylbenzimidazolocarbocyanine iodide dye assay) and mitochondrial ultrastructure (transmission electron microscopy) were similar between the groups. Proteomics of heart tissue further suggested amplified Src/Ras/Erk1/2 signaling and increased oxidative stress and provided the molecular basis for systolic dysfunction in 8-month-old α2+/G301R mice. Conclusions Our findings suggest that ATP1A2 mutation leads to disturbed cardiac metabolism and reduced cardiac function mediated via Na,K-ATPase-dependent reactive oxygen species signaling through the Src/Ras/Erk1/2 pathway.


Assuntos
Coração , Transtornos de Enxaqueca , Enxaqueca com Aura , ATPase Trocadora de Sódio-Potássio , Animais , Coração/fisiopatologia , Heterozigoto , Camundongos , Enxaqueca com Aura/metabolismo , Mutação , Miocárdio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética
17.
J Proteome Res ; 21(4): 910-920, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35263542

RESUMO

Extracellular vesicles (EVs) mediate communication in physiological and pathological conditions. In the pathogenesis of type 2 diabetes, inter-organ communication plays an important role in its progress and metabolic surgery leads to its remission. Moreover, gut dysbiosis is emerging as a diabetogenic factor. However, it remains unclear how the gut senses metabolic alterations and whether this is transmitted to other tissues via EVs. Using a diet-induced prediabetic mouse model, we observed that protein packaging in gut-derived EVs (GDE), specifically the small intestine, is altered in prediabetes. Proteins related to lipid metabolism and to oxidative stress management were more abundant in prediabetic GDE compared to healthy controls. On the other hand, proteins related to glycolytic activity, as well as those responsible for the degradation of polyubiquitinated composites, were depleted in prediabetic GDE. Together, our findings show that protein packaging in GDE is markedly modified during prediabetes pathogenesis, thus suggesting that prediabetic alterations in the small intestine are translated into modified GDE proteomes, which are dispersed into the circulation where they can interact with and influence the metabolic status of other tissues. This study highlights the importance of the small intestine as a tissue that propagates prediabetic metabolic dysfunction throughout the body and the importance of GDE as the messengers. Data are available via ProteomeXchange with identifier PXD028338.


Assuntos
Diabetes Mellitus Tipo 2 , Vesículas Extracelulares , Estado Pré-Diabético , Animais , Diabetes Mellitus Tipo 2/metabolismo , Vesículas Extracelulares/metabolismo , Intestino Delgado/metabolismo , Camundongos , Estado Pré-Diabético/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteômica
18.
Biomedicines ; 10(2)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35203568

RESUMO

The pathogenesis of abdominal aortic aneurysm involves vascular inflammation and elastin degradation. Astragalusradix contains cycloastragenol, which is known to be anti-inflammatory and to protect against elastin degradation. We hypothesized that cycloastragenol supplementation inhibits abdominal aortic aneurysm progression. Abdominal aortic aneurysm was induced in male rats by intraluminal elastase infusion in the infrarenal aorta and treated daily with cycloastragenol (125 mg/kg/day). Aortic expansion was followed weekly by ultrasound for 28 days. Changes in aneurysmal wall composition were analyzed by mRNA levels, histology, zymography and explorative proteomic analyses. At day 28, mean aneurysm diameter was 37% lower in the cycloastragenol group (p < 0.0001). In aneurysm cross sections, elastin content was insignificantly higher in the cycloastragenol group (10.5% ± 5.9% vs. 19.9% ± 16.8%, p = 0.20), with more preserved elastin lamellae structures (p = 0.0003) and without microcalcifications. Aneurysmal matrix metalloprotease-2 activity was reduced by the treatment (p = 0.022). Messenger RNA levels of inflammatory- and anti-oxidative markers did not differ between groups. Explorative proteomic analysis showed no difference in protein levels when adjusting for multiple testing. Among proteins displaying nominal regulation were fibulin-5 (p = 0.02), aquaporin-1 (p = 0.02) and prostacyclin synthase (p = 0.007). Cycloastragenol inhibits experimental abdominal aortic aneurysm progression. The suggested underlying mechanisms involve decreased matrix metalloprotease-2 activity and preservation of elastin and reduced calcification, thus, cycloastragenol could be considered for trial in abdominal aortic aneurysm patients.

19.
Int J Mol Sci ; 23(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35163613

RESUMO

Erectile dysfunction is a common complication associated with type 2 diabetes mellitus (T2DM) and after prostatectomy in relation to cancer. The regenerative effect of cultured adipose-derived stem cells (ASCs) for ED therapy has been documented in multiple preclinical trials as well as in recent Pase 1 trials in humans. However, some studies indicate that diabetes negatively affects the mesenchymal stem cell pool, implying that ASCs from T2DM patients could have impaired regenerative capacity. Here, we directly compared ASCs from age-matched diabetic Goto-Kakizaki (ASCGK) and non-diabetic wild type rats (ASCWT) with regard to their phenotypes, proteomes and ability to rescue ED in normal rats. Despite ASCGK exhibiting a slightly lower proliferation rate, ASCGK and ASCWT proteomes were more or less identical, and after injections to corpus cavernosum they were equally efficient in restoring erectile function in a rat ED model entailing bilateral nerve crush injury. Moreover, molecular analysis of the corpus cavernosum tissue revealed that both ASCGK and ASCWT treated rats had increased induction of genes involved in recovering endothelial function. Thus, our finding argues that T2DM does not appear to be a limiting factor for autologous adipose stem cell therapy when correcting for ED.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Disfunção Erétil/terapia , Transplante de Células-Tronco , Tecido Adiposo/citologia , Animais , Células Cultivadas , Disfunção Erétil/etiologia , Masculino , Ratos , Células-Tronco
20.
Biomedicines ; 10(1)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35052841

RESUMO

The human plasma proteome mirrors the physiological state of the cardiovascular system, a fact that has been used to analyze plasma biomarkers in routine analysis for the diagnosis and monitoring of cardiovascular diseases for decades. These biomarkers address, however, only a very limited subset of cardiovascular diseases, such as acute myocardial infarct or acute deep vein thrombosis, and clinical plasma biomarkers for the diagnosis and stratification cardiovascular diseases that are growing in incidence, such as heart failure and abdominal aortic aneurysm, do not exist and are urgently needed. The discovery of novel biomarkers in plasma has been hindered by the complexity of the human plasma proteome that again transforms into an extreme analytical complexity when it comes to the discovery of novel plasma biomarkers. This complexity is, however, addressed by recent achievements in technologies for analyzing the human plasma proteome, thereby facilitating the possibility for novel biomarker discoveries. The aims of this article is to provide an overview of the recent achievements in technologies for proteomic analysis of the human plasma proteome and their applications in cardiovascular medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...