Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioelectrochemistry ; 149: 108314, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36335789

RESUMO

A new redox polymer/bilirubin oxidase (BOD)-based gas diffusion electrode was designed to be implemented as the non-current and non-stability limiting biocathode in a glucose/O2 biofuel cell that acts as a self-powered glucose biosensor. For the proof-of-concept, a bioanode comprising the Os-complex modified redox polymer P(VI-co-AA)-[Os(bpy)2Cl]Cl and FAD-dependent glucose dehydrogenase to oxidize the analyte was used. In order to develop an optimal O2-reducing biocathode for the biofuel cell Mv-BOD as well as Bp-BOD and Mo-BOD have been tested in gas diffusion electrodes in direct electron transfer as well as in mediated electron transfer immobilized in the Os-complex modified redox polymer P(VI-co-AA)-[Os(diCl-bpy)2]Cl2. The resulting biofuel cell exhibits a glucose-dependent current and power output in the concentration region between 1 and 10 mM. To create a more realistic test environment, the performance and long-term stability of the biofuel cell-based self-powered glucose biosensor has been investigated in a flow-through cell design.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Bilirrubina , Eletrodos , Enzimas Imobilizadas/metabolismo , Glucose , Glucose 1-Desidrogenase/metabolismo , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Polímeros , Gases
2.
ACS Appl Mater Interfaces ; 14(41): 46421-46426, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36194638

RESUMO

The development of electrodes for efficient CO2 reduction while forming valuable compounds is critical. The use of enzymes as catalysts provides the advantage of high catalytic activity in combination with highly selective transformations. We describe the electrical wiring of a carbon monoxide dehydrogenase II from Carboxydothermus hydrogenoformans (ChCODH II) using a cobaltocene-based low-potential redox polymer for the selective reduction of CO2 to CO over gas diffusion electrodes. High catalytic current densities of up to -5.5 mA cm-2 are achieved, exceeding the performance of previously reported bioelectrodes for CO2 reduction based on either carbon monoxide dehydrogenases or formate dehydrogenases. The proposed bioelectrode reveals considerable stability with a half-life of more than 20 h of continuous operation. Product quantification using gas chromatography confirmed the selective transformation of CO2 into CO without any parasitic co-reactions at the applied potentials.


Assuntos
Monóxido de Carbono , Formiato Desidrogenases , Formiato Desidrogenases/química , Monóxido de Carbono/química , Dióxido de Carbono/química , Polímeros , Instalação Elétrica , Eletrodos , Oxirredução
3.
Front Behav Neurosci ; 13: 256, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798429

RESUMO

During extinction learning (EL), an individual learns that a previously learned behavior no longer fulfills its original purpose, or is no longer relevant. Recent studies have contradicted earlier theories that EL comprises forgetting, or the inhibition of the previously learned behavior, and indicate that EL comprises new associative learning. This suggests that the hippocampus is involved in this process. Empirical evidence is lacking however. Here, we used fluorescence in situ hybridization of somatic immediate early gene (IEG) expression to scrutinize if the hippocampus processes EL. Rodents engaged in context-dependent EL and were also tested for renewal of (the original behavioral response to) a spatial appetitive task in a T-maze. Whereas distal and proximal CA1 subfields processed both EL and renewal, effects in the proximal CA1 were more robust consistent with a role of this subfield in processing context. The lower blade of the dentate gyrus (DG) and the proximal CA3 subfields were particularly involved in renewal. Responses in the distal and proximal CA3 subfields suggest that this hippocampal subregion may also contribute to the evaluation of the reward outcome. Taken together, our findings provide novel and direct evidence for the involvement of distinct hippocampal subfields in context-dependent EL and renewal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA