Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(3): eadj4960, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38232174

RESUMO

Revolutionary advancements in underwater imaging, robotics, and genomic sequencing have reshaped marine exploration. We present and demonstrate an interdisciplinary approach that uses emerging quantitative imaging technologies, an innovative robotic encapsulation system with in situ RNA preservation and next-generation genomic sequencing to gain comprehensive biological, biophysical, and genomic data from deep-sea organisms. The synthesis of these data provides rich morphological and genetic information for species description, surpassing traditional passive observation methods and preserved specimens, particularly for gelatinous zooplankton. Our approach enhances our ability to study delicate mid-water animals, improving research in the world's oceans.


Assuntos
Robótica , Zooplâncton , Animais , Oceanos e Mares , Zooplâncton/genética , Água , Gelatina
2.
Nat Comput Sci ; 3(5): 443-454, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-38177849

RESUMO

We present an additive approach for the inverse design of kirigami-based mechanical metamaterials by focusing on the empty (negative) spaces instead of the solid tiles. By considering each negative space as a four-bar linkage, we identify a simple recursive relationship between adjacent linkages, yielding an efficient method for creating kirigami patterns. This allows us to solve the kirigami design problem using elementary linear algebra, with compatibility, reconfigurability and rigid-deployability encoded into an iterative procedure involving simple matrix multiplications. The resulting linear design strategy circumvents the solution of a non-convex global optimization problem and allows us to control the degrees of freedom in the deployment angle field, linkage offsets and boundary conditions. We demonstrate this by creating a large variety of rigid-deployable, compact, reconfigurable kirigami patterns. We then realize our kirigami designs physically using two simple but effective fabrication strategies with very different materials. Altogether, our additive approaches present routes for efficient mechanical metamaterial design and fabrication based on ori/kirigami art forms.

3.
Proc Natl Acad Sci U S A ; 119(42): e2209819119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215466

RESUMO

Grasping, in both biological and engineered mechanisms, can be highly sensitive to the gripper and object morphology, as well as perception and motion planning. Here, we circumvent the need for feedback or precise planning by using an array of fluidically actuated slender hollow elastomeric filaments to actively entangle with objects that vary in geometric and topological complexity. The resulting stochastic interactions enable a unique soft and conformable grasping strategy across a range of target objects that vary in size, weight, and shape. We experimentally evaluate the grasping performance of our strategy and use a computational framework for the collective mechanics of flexible filaments in contact with complex objects to explain our findings. Overall, our study highlights how active collective entanglement of a filament array via an uncontrolled, spatially distributed scheme provides options for soft, adaptable grasping.


Assuntos
Robótica , Força da Mão , Robótica/métodos
4.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34417289

RESUMO

Regulation systems for fluid-driven soft robots predominantly consist of inflexible and bulky components. These rigid structures considerably limit the adaptability and mobility of these robots. Soft valves in various forms for fluidic actuators have been developed, primarily fluidically or electrically driven. However, fluidic soft valves require external pressure sources that limit robot locomotion. State-of-the-art electrostatic valves are unable to modulate pressure beyond 3.5 kPa with a sufficient flow rate (>6 mL⋅min-1). In this work, we present an electrically powered soft valve for hydraulic actuators with mesoscale channels based on a different class of ultrahigh-power density dynamic dielectric elastomer actuators. The dynamic dielectric elastomer actuators (DEAs) are actuated at 500 Hz or above. These DEAs generate 300% higher blocked force compared with the dynamic DEAs in previous works and their loaded power density reaches 290 W⋅kg-1 at operating conditions. The soft valves are developed with compact (7 mm tall) and lightweight (0.35 g) dynamic DEAs, and they allow effective control of up to 51 kPa of pressure and a 40 mL⋅min-1 flow rate with a response time less than 0.1 s. The valves can also tune flow rates based on their driving voltages. Using the DEA soft valves, we demonstrate control of hydraulic actuators of different volumes and achieve independent control of multiple actuators powered by a single pressure source. This compact and lightweight DEA valve is capable of unprecedented electrical control of hydraulic actuators, showing the potential for future onboard motion control of soft fluid-driven robots.

5.
Soft Matter ; 16(25): 5871-5877, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32249863

RESUMO

The field of soft robotics endeavors to create robots that are mostly, if not entirely, soft. While there have been significant advances in both soft actuators and soft sensors, there has been relatively little work done in the development of soft control systems. This work proposes a soft microfluidic demultiplexer as a potential control system for soft robotics. Demultiplexers enable the control of many outputs with just a few inputs, increasing a soft robot's complexity while minimizing its reliance on external valves and other off-board components. The demultiplexer in this work improves upon earlier microfluidic demultiplexers with its nearly two-fold reduction of inputs, a design feature that simplifies control and increases efficiency. Additionally, the demultiplexer in this work is designed to accommodate the high pressures and flow rates that soft robotics demands. The demultiplexer is characterized from the level of individual valves to full system parameters, and its functionality is demonstrated by controlling an array of individually addressable soft actuators.

6.
Sci Rep ; 8(1): 14779, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30283051

RESUMO

Modern marine biologists seeking to study or interact with deep-sea organisms are confronted with few options beyond industrial robotic arms, claws, and suction samplers. This limits biological interactions to a subset of "rugged" and mostly immotile fauna. As the deep sea is one of the most biologically diverse and least studied ecosystems on the planet, there is much room for innovation in facilitating delicate interactions with a multitude of organisms. The biodiversity and physiology of shallow marine systems, such as coral reefs, are common study targets due to the easier nature of access; SCUBA diving allows for in situ delicate human interactions. Beyond the range of technical SCUBA (~150 m), the ability to achieve the same level of human dexterity using robotic systems becomes critically important. The deep ocean is navigated primarily by manned submersibles or remotely operated vehicles, which currently offer few options for delicate manipulation. Here we present results in developing a soft robotic manipulator for deep-sea biological sampling. This low-power glove-controlled soft robot was designed with the future marine biologist in mind, where science can be conducted at a comparable or better means than via a human diver and at depths well beyond the limits of SCUBA. The technology relies on compliant materials that are matched with the soft and fragile nature of marine organisms, and uses seawater as the working fluid. Actuators are driven by a custom proportional-control hydraulic engine that requires less than 50 W of electrical power, making it suitable for battery-powered operation. A wearable glove master allows for intuitive control of the arm. The manipulator system has been successfully operated in depths exceeding 2300 m (3500 psi) and has been field-tested onboard a manned submersible and unmanned remotely operated vehicles. The design, development, testing, and field trials of the soft manipulator is placed in context with existing systems and we offer suggestions for future work based on these findings.


Assuntos
Organismos Aquáticos/fisiologia , Ecossistema , Biologia Marinha/instrumentação , Robótica/instrumentação , Biodiversidade , Recifes de Corais , Humanos , Água do Mar
7.
PLoS One ; 13(8): e0200386, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30067780

RESUMO

Soft robotics is an emerging technology that has shown considerable promise in deep-sea marine biological applications. It is particularly useful in facilitating delicate interactions with fragile marine organisms. This study describes the shipboard design, 3D printing and integration of custom soft robotic manipulators for investigating and interacting with deep-sea organisms. Soft robotics manipulators were tested down to 2224m via a Remotely-Operated Vehicle (ROV) in the Phoenix Islands Protected Area (PIPA) and facilitated the study of a diverse suite of soft-bodied and fragile marine life. Instantaneous feedback from the ROV pilots and biologists allowed for rapid re-design, such as adding "fingernails", and re-fabrication of soft manipulators at sea. These were then used to successfully grasp fragile deep-sea animals, such as goniasterids and holothurians, which have historically been difficult to collect undamaged via rigid mechanical arms and suction samplers. As scientific expeditions to remote parts of the world are costly and lengthy to plan, on-the-fly soft robot actuator printing offers a real-time solution to better understand and interact with delicate deep-sea environments, soft-bodied, brittle, and otherwise fragile organisms. This also offers a less invasive means of interacting with slow-growing deep marine organisms, some of which can be up to 18,000 years old.


Assuntos
Organismos Aquáticos , Desenho de Equipamento , Robótica , Oceanos e Mares , Impressão Tridimensional
8.
Soft Robot ; 5(4): 399-409, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29672216

RESUMO

This article presents the development of modular soft robotic wrist joint mechanisms for delicate and precise manipulation in the harsh deep-sea environment. The wrist consists of a rotary module and bending module, which can be combined with other actuators as part of a complete manipulator system. These mechanisms are part of a suite of soft robotic actuators being developed for deep-sea manipulation via submersibles and remotely operated vehicles, and are designed to be powered hydraulically with seawater. The wrist joint mechanisms can also be activated with pneumatic pressure for terrestrial-based applications, such as automated assembly and robotic locomotion. Here we report the development and characterization of a suite of rotary and bending modules by varying fiber number and silicone hardness. Performance of the complete soft robotic wrist is demonstrated in normal atmospheric conditions using both pneumatic and hydraulic pressures for actuation and under high ambient hydrostatic pressures equivalent to those found at least 2300 m deep in the ocean. This rugged modular wrist holds the potential to be utilized at full ocean depths (>10,000 m) and is a step forward in the development of jointed underwater soft robotic arms.


Assuntos
Robótica/instrumentação , Desenho de Equipamento , Humanos , Oceanos e Mares , Articulação do Punho
9.
Sci Robot ; 3(20)2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-33141728

RESUMO

Self-folding polyhedra have emerged as a viable design strategy for a wide range of applications, with advances largely made through modeling and experimentation at the micro- and millimeter scale. Translating these concepts to larger scales for practical purposes is an obvious next step; however, the size, weight, and method of actuation present a new set of problems to overcome. We have developed large-scale folding polyhedra to rapidly and noninvasively enclose marine organisms in the water column. The design is based on an axisymmetric dodecahedron net that is folded by an external assembly linkage. Requiring only a single rotary actuator to fold, the device is suited for remote operation onboard underwater vehicles and has been field-tested to encapsulate a variety of delicate deep-sea organisms. Our work validates the use of self-folding polyhedra for marine biological applications that require minimal actuation to achieve complex motion. The device was tested to 700 m, but the system was designed to withstand full ocean depth (11 km) pressures. We envision broader terrestrial applications of rotary-actuated folding polyhedra, ranging from large-scale deployable habitats and satellite solar arrays to small-scale functional origami microelectromechanical systems.

10.
Soft Robot ; 3(1): 23-33, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27625917

RESUMO

This article presents the development of an underwater gripper that utilizes soft robotics technology to delicately manipulate and sample fragile species on the deep reef. Existing solutions for deep sea robotic manipulation have historically been driven by the oil industry, resulting in destructive interactions with undersea life. Soft material robotics relies on compliant materials that are inherently impedance matched to natural environments and to soft or fragile organisms. We demonstrate design principles for soft robot end effectors, bench-top characterization of their grasping performance, and conclude by describing in situ testing at mesophotic depths. The result is the first use of soft robotics in the deep sea for the nondestructive sampling of benthic fauna.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...