Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(18): 11631-11643, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38652829

RESUMO

Pharmacological activation of the retinoic acid-inducible gene I (RIG-I) pathway holds promise for increasing tumor immunogenicity and improving the response to immune checkpoint inhibitors (ICIs). However, the potency and clinical efficacy of 5'-triphosphate RNA (3pRNA) agonists of RIG-I are hindered by multiple pharmacological barriers, including poor pharmacokinetics, nuclease degradation, and inefficient delivery to the cytosol where RIG-I is localized. Here, we address these challenges through the design and evaluation of ionizable lipid nanoparticles (LNPs) for the delivery of 3p-modified stem-loop RNAs (SLRs). Packaging of SLRs into LNPs (SLR-LNPs) yielded surface charge-neutral nanoparticles with a size of ∼100 nm that activated RIG-I signaling in vitro and in vivo. SLR-LNPs were safely administered to mice via both intratumoral and intravenous routes, resulting in RIG-I activation in the tumor microenvironment (TME) and the inhibition of tumor growth in mouse models of poorly immunogenic melanoma and breast cancer. Significantly, we found that systemic administration of SLR-LNPs reprogrammed the breast TME to enhance the infiltration of CD8+ and CD4+ T cells with antitumor function, resulting in enhanced response to αPD-1 ICI in an orthotopic EO771 model of triple-negative breast cancer. Therapeutic efficacy was further demonstrated in a metastatic B16.F10 melanoma model, with systemically administered SLR-LNPs significantly reducing lung metastatic burden compared to combined αPD-1 + αCTLA-4 ICI. Collectively, these studies have established SLR-LNPs as a translationally promising immunotherapeutic nanomedicine for potent and selective activation of RIG-I with the potential to enhance response to ICIs and other immunotherapeutic modalities.


Assuntos
Imunoterapia , Nanopartículas , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Lipídeos/química , Camundongos Endogâmicos C57BL , Nanopartículas/química , Microambiente Tumoral/efeitos dos fármacos
2.
ACS Nano ; 18(9): 6845-6862, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38386282

RESUMO

Immune checkpoint blockade (ICB) has revolutionized cancer treatment and led to complete and durable responses, but only for a minority of patients. Resistance to ICB can largely be attributed to insufficient number and/or function of antitumor CD8+ T cells in the tumor microenvironment. Neoantigen targeted cancer vaccines can activate and expand the antitumor T cell repertoire, but historically, clinical responses have been poor because immunity against peptide antigens is typically weak, resulting in insufficient activation of CD8+ cytotoxic T cells. Herein, we describe a nanoparticle vaccine platform that can overcome these barriers in several ways. First, the vaccine can be reproducibly formulated using a scalable confined impingement jet mixing method to coload a variety of physicochemically diverse peptide antigens and multiple vaccine adjuvants into pH-responsive, vesicular nanoparticles that are monodisperse and less than 100 nm in diameter. Using this approach, we encapsulated synergistically acting adjuvants, cGAMP and monophosphoryl lipid A (MPLA), into the nanocarrier to induce a robust and tailored innate immune response that increased peptide antigen immunogenicity. We found that incorporating both adjuvants into the nanovaccine synergistically enhanced expression of dendritic cell costimulatory markers, pro-inflammatory cytokine secretion, and peptide antigen cross-presentation. Additionally, the nanoparticle delivery increased lymph node accumulation and uptake of peptide antigen by dendritic cells in the draining lymph node. Consequently, nanoparticle codelivery of peptide antigen, cGAMP, and MPLA enhanced the antigen-specific CD8+ T cell response and delayed tumor growth in several mouse models. Finally, the nanoparticle platform improved the efficacy of ICB immunotherapy in a murine colon carcinoma model. This work establishes a versatile nanoparticle vaccine platform for codelivery of peptide neoantigens and synergistic adjuvants to enhance responses to cancer vaccines.


Assuntos
Vacinas Anticâncer , Nanopartículas , Neoplasias , Humanos , Animais , Camundongos , Linfócitos T CD8-Positivos , Receptor 4 Toll-Like , Nanovacinas , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antígenos , Peptídeos , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/uso terapêutico , Imunoterapia/métodos , Camundongos Endogâmicos C57BL , Microambiente Tumoral
3.
Sci Immunol ; 8(83): eadd1153, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37146128

RESUMO

The tumor-associated vasculature imposes major structural and biochemical barriers to the infiltration of effector T cells and effective tumor control. Correlations between stimulator of interferon genes (STING) pathway activation and spontaneous T cell infiltration in human cancers led us to evaluate the effect of STING-activating nanoparticles (STANs), which are a polymersome-based platform for the delivery of a cyclic dinucleotide STING agonist, on the tumor vasculature and attendant effects on T cell infiltration and antitumor function. In multiple mouse tumor models, intravenous administration of STANs promoted vascular normalization, evidenced by improved vascular integrity, reduced tumor hypoxia, and increased endothelial cell expression of T cell adhesion molecules. STAN-mediated vascular reprogramming enhanced the infiltration, proliferation, and function of antitumor T cells and potentiated the response to immune checkpoint inhibitors and adoptive T cell therapy. We present STANs as a multimodal platform that activates and normalizes the tumor microenvironment to enhance T cell infiltration and function and augments responses to immunotherapy.


Assuntos
Nanopartículas , Neoplasias , Camundongos , Animais , Humanos , Imunoterapia , Linfócitos T , Modelos Animais de Doenças , Microambiente Tumoral
4.
J Control Release ; 345: 354-370, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35301055

RESUMO

Traditional approaches to cancer vaccines elicit weak CD8+ T cell responses and have largely failed to meet clinical expectations. This is in part due to inefficient antigen cross-presentation, inappropriate selection of adjuvant and its formulation, poor vaccine pharmacokinetics, and/or suboptimal coordination of antigen and adjuvant delivery. Here, we describe a nanoparticle vaccine platform for facile co-loading and dual-delivery of antigens and nucleic acid adjuvants that elicits robust antigen-specific cellular immune responses. The nanovaccine design is based on diblock copolymers comprising a poly(ethylene glycol)-rich first block that is functionalized with reactive moieties for covalent conjugation of antigen via disulfide linkages, and a pH-responsive second block for electrostatic packaging of nucleic acids that also facilitates endosomal escape of associated vaccine cargo to the cytosol. Using polyIC, a clinically-advanced nucleic acid adjuvant, we demonstrated that endosomolytic nanoparticles promoted the cytosolic co-delivery of polyIC and protein antigen, which acted synergistically to enhance antigen cross-presentation, co-stimulatory molecule expression, and cytokine production by dendritic cells. We also found that the vaccine platform increased the accumulation of antigen and polyIC in the local draining lymph nodes. Consequently, dual-delivery of antigen and polyIC with endsomolytic nanoparticles significantly enhanced the magnitude and functionality of CD8+ T cell responses relative to a mixture of antigen and polyIC, resulting in inhibition of tumor growth in a mouse tumor model. Collectively, this work provides a proof-of-principle for a new cancer vaccine platform that strongly augments anti-tumor cellular immunity via cytosolic co-delivery of antigen and nucleic acid adjuvant.


Assuntos
Vacinas Anticâncer , Nanopartículas , Adjuvantes Imunológicos/farmacologia , Animais , Antígenos/química , Linfócitos T CD8-Positivos , Citosol , Células Dendríticas , Imunidade Celular , Camundongos , Nanopartículas/química , Ovalbumina , RNA
5.
Adv Healthc Mater ; 10(2): e2001056, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33225632

RESUMO

Cyclic dinucleotide (CDN) agonists of stimulator of interferon genes (STING) hold great therapeutic potential, but their activity is hindered by poor drug-like properties that restrict cytosolic bioavailability. Here, this challenge is addressed through the synthesis and evaluation of a novel series of PEGMA-co-DEAEMA-co-BMA copolymers with pH-responsive, membrane-destabilizing activity to enhance intracellular delivery of the CDN, cGAMP. Copolymers are synthesized with PEGMA of two different molecular weights (300 and 950 Da) and over a range of PEG mass fraction and polymer molecular weight, and relationships between copolymer structure, self-assembly, endosomal escape, and cGAMP activity are elucidated. A subset of polymers that self-assembled into 50-800 nm nanoparticles is identified, which can be loaded with cGAMP via a simple mixing strategy, resulting in significantly enhanced immunostimulatory activity. Increased cGAMP activity is found to be highly correlated with the capacity of carriers to enhance intracellular CDN uptake and to promote endosomal destabilization, findings that establish efficient cytosolic delivery as a criterion for CDN carriers. Additionally, it is demonstrated that a lead CDN carrier formulation can enhance STING activation in vivo in a model of intratumoral immunotherapy. Collectively, these investigations demonstrate the utility of PEGMA-co-DEAEMA-co-BMA copolymers as carriers for CDNs and potentially other cytosolically-acting drug cargo.


Assuntos
Proteínas de Membrana , Nanopartículas , Imunoterapia , Polieletrólitos , Polímeros
6.
J Control Release ; 330: 1118-1129, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33189789

RESUMO

The stimulator of interferon genes (STING) pathway plays an important role in the immune surveillance of cancer and, accordingly, agonists of STING signaling have recently emerged as promising therapeutics for remodeling of the immunosuppressive tumor microenvironment (TME) and enhancing response rates to immune checkpoint inhibitors. 2'3'-cyclic guanosine monophosphate-adenosine monophosphate (2'3'-cGAMP) is the endogenous ligand for STING, but is rapidly metabolized and poorly membrane permeable, restricting its use to intratumoral administration. Nanoencapsulation has been shown to allow for systemic administration of cGAMP and other cyclic dinucleotides (CDN), but little is known about how nanocarriers affect important pharmacological properties that impact the efficacy and safety of CDNs. Using STING-activating nanoparticles (STING-NPs) - a polymersome platform designed to enhance cGAMP delivery - we investigate the pharmacokinetic (PK)-pharmacodynamic (PD) relationships that underlie the ability of intravenously (i.v.) administered STING-NPs to induce STING activation and inhibit tumor growth. First, we demonstrate that nanoencapsulation improves the half-life of encapsulated cGAMP by 40-fold, allowing for sufficient accumulation of cGAMP in tumors and activation of the STING pathway in the TME as assessed by western blot analysis and gene expression profiling. Nanoparticle delivery also changes the biodistribution profile, resulting in increased cGAMP accumulation and STING activation in the liver and spleen, which we identify as dose limiting organs. As a consequence of STING activation in tumors, i.v. administered STING-NPs reprogram the TME towards a more immunogenic antitumor milieu, characterized by an influx of >20-fold more CD4+ and CD8+ T-cells. Consequently, STING-NPs increased response rates to αPD-L1 antibodies, resulting in significant improvements in median survival time in a B16-F10 melanoma model. Additionally, we confirmed STING-NP monotherapy in an additional melanoma (YUMM1.7) and breast adenocarcinoma (E0771) models leading to >50% and 80% reduction in tumor burden, respectively, and significant increases in median survival time. Collectively, this work provides an examination of the PK-PD relationship governing STING activation upon systemic delivery using STING-NPs, providing insight for future optimization for nanoparticle-based STING agonists and other immunomodulating nanomedicines.


Assuntos
Imunoterapia , Nanopartículas , Administração Intravenosa , Linfócitos T CD8-Positivos/metabolismo , Proteínas de Membrana/metabolismo , Distribuição Tecidual
7.
ACS Cent Sci ; 6(11): 2008-2022, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33274278

RESUMO

RNA ligands of retinoic acid-inducible gene I (RIG-I) hold significant promise as antiviral agents, vaccine adjuvants, and cancer immunotherapeutics, but their efficacy is hindered by inefficient intracellular delivery to the cytosol where RIG-I is localized. Here, we address this challenge through the synthesis and evaluation of a library of polymeric carriers rationally designed to promote the endosomal escape of 5'-triphosphate RNA (3pRNA) RIG-I agonists. We synthesized a series of PEG-block-(DMAEMA-co-A n MA) polymers, where A n MA is an alkyl methacrylate monomer ranging from n = 2-12 carbons, of variable composition, and examined effects of polymer structure on the intracellular delivery of 3pRNA. Through in vitro screening of 30 polymers, we identified four lead carriers (4-50, 6-40, 8-40, and 10-40, where the first number refers to the alkyl chain length and the second number refers to the percentage of hydrophobic monomer) that packaged 3pRNA into ∼100-nm-diameter particles and significantly enhanced its immunostimulatory activity in multiple cell types. In doing so, these studies also revealed an interplay between alkyl chain length and monomer composition in balancing RNA loading, pH-responsive properties, and endosomal escape, studies that establish new structure-activity relationships for polymeric delivery of 3pRNA and other nucleic acid therapeutics. Importantly, lead carriers enabled intravenous administration of 3pRNA in mice, resulting in increased RIG-I activation as measured by increased levels of IFN-α in serum and elevated expression of Ifnb1 and Cxcl10 in major clearance organs, effects that were dependent on polymer composition. Collectively, these studies have yielded novel polymeric carriers designed and optimized specifically to enhance the delivery and activity of 3pRNA with potential to advance the clinical development of RIG-I agonists.

8.
ACS Nano ; 14(8): 9904-9916, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32701257

RESUMO

Cancer vaccines targeting patient-specific neoantigens have emerged as a promising strategy for improving responses to immune checkpoint blockade. However, neoantigenic peptides are poorly immunogenic and inept at stimulating CD8+ T cell responses, motivating a need for new vaccine technologies that enhance their immunogenicity. The stimulator of interferon genes (STING) pathway is an endogenous mechanism by which the innate immune system generates an immunological context for priming and mobilizing neoantigen-specific T cells. Owing to this critical role in tumor immune surveillance, a synthetic cancer nanovaccine platform (nanoSTING-vax) was developed that mimics immunogenic cancer cells in its capacity to efficiently promote co-delivery of peptide antigens and the STING agonist, cGAMP. The co-loading of cGAMP and peptides into pH-responsive, endosomolytic polymersomes promoted the coordinated delivery of both cGAMP and peptide antigens to the cytosol, thereby eliciting inflammatory cytokine production, co-stimulatory marker expression, and antigen cross-presentation. Consequently, nanoSTING-vax significantly enhanced CD8+ T cell responses to a range of peptide antigens. Therapeutic immunization with nanoSTING-vax, in combination with immune checkpoint blockade, inhibited tumor growth in multiple murine tumor models, even leading to complete tumor rejection and generation of durable antitumor immune memory. Collectively, this work establishes nanoSTING-vax as a versatile platform for enhancing immune responses to neoantigen-targeted cancer vaccines.


Assuntos
Vacinas Anticâncer , Neoplasias , Animais , Antígenos de Neoplasias , Humanos , Interferons , Camundongos , Neoplasias/tratamento farmacológico , Peptídeos
9.
J Leukoc Biol ; 108(4): 1435-1453, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31430398

RESUMO

Cancer vaccines hold promise as an immunotherapeutic modality based on their potential to generate tumor antigen-specific T cell responses and long-lived antitumor responses capable of combating metastatic disease and recurrence. However, cancer vaccines have historically failed to deliver significant therapeutic benefit in the clinic, which we maintain is due in part to drug delivery challenges that have limited vaccine immunogenicity and efficacy. In this review, we examine some of the known and putative failure mechanisms of common first-generation clinical cancer vaccines, and describe how the rational design of materials engineered for vaccine delivery and immunomodulation can address these shortcomings. First, we outline vaccine design principles for augmenting cellular immunity to tumor antigens and describe how well-engineered materials can improve vaccine efficacy, highlighting recent innovations in vaccine delivery technology that are primed for integration into neoantigen vaccine development pipelines. We also discuss the importance of sequencing, timing, and kinetics in mounting effective immune responses to cancer vaccines, and highlight examples of materials that potentiate antitumor immunity through spatiotemporal control of immunomodulation. Furthermore, we describe several engineering strategies for improving outcomes of in situ cancer vaccines, which leverage local, intratumoral delivery to stimulate systemic immunity. Finally, we highlight recent innovations leveraging nanotechnology for increasing the immunogenicity of the tumor microenvironment (TME), which is critical to enhancing tumor infiltration and function of T cells elicited in response to cancer vaccines. These immunoengineering strategies and tools complement ongoing advances in cancer vaccines as they reemerge as an important component of the immunotherapeutic armamentarium.


Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer , Imunogenicidade da Vacina , Linfócitos do Interstício Tumoral/imunologia , Neoplasias , Microambiente Tumoral/imunologia , Animais , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Humanos , Linfócitos do Interstício Tumoral/patologia , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia
10.
ACS Nano ; 13(10): 10939-10960, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31553872

RESUMO

Tissue-resident memory T cells (TRM) patrol nonlymphoid organs and provide superior protection against pathogens that commonly infect mucosal and barrier tissues, such as the lungs, intestine, liver, and skin. Thus, there is a need for vaccine technologies that can induce a robust, protective TRM response in these tissues. Nanoparticle (NP) vaccines offer important advantages over conventional vaccines; however, there has been minimal investigation into the design of NP-based vaccines for eliciting TRM responses. Here, we describe a pH-responsive polymeric nanoparticle vaccine for generating antigen-specific CD8+ TRM cells in the lungs. With a single intranasal dose, the NP vaccine elicited airway- and lung-resident CD8+ TRM cells and protected against respiratory virus challenge in both sublethal (vaccinia) and lethal (influenza) infection models for up to 9 weeks after immunization. In elucidating the contribution of material properties to the resulting TRM response, we found that the pH-responsive activity of the carrier was important, as a structurally analogous non-pH-responsive control carrier elicited significantly fewer lung-resident CD8+ T cells. We also demonstrated that dual-delivery of protein antigen and nucleic acid adjuvant on the same NP substantially enhanced the magnitude, functionality, and longevity of the antigen-specific CD8+ TRM response in the lungs. Compared to administration of soluble antigen and adjuvant, the NP also mediated retention of vaccine cargo in pulmonary antigen-presenting cells (APCs), enhanced APC activation, and increased production of TRM-related cytokines. Overall, these data suggest a promising vaccine platform technology for rapid generation of protective CD8+ TRM cells in the lungs.


Assuntos
Adjuvantes Imunológicos/farmacologia , Memória Imunológica/efeitos dos fármacos , Influenza Humana/imunologia , Pulmão/imunologia , Administração Intranasal , Animais , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Humanos , Concentração de Íons de Hidrogênio , Imunização/métodos , Imunogenicidade da Vacina/efeitos dos fármacos , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Pulmão/efeitos dos fármacos , Camundongos , Nanopartículas/química , Nanopartículas/uso terapêutico , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Vacinas/imunologia , Vacinas/farmacologia
11.
Nat Nanotechnol ; 14(3): 269-278, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30664751

RESUMO

Cyclic dinucleotide (CDN) agonists of stimulator of interferon genes (STING) are a promising class of immunotherapeutics that activate innate immunity to increase tumour immunogenicity. However, the efficacy of CDNs is limited by drug delivery barriers, including poor cellular targeting, rapid clearance and inefficient transport to the cytosol where STING is localized. Here, we describe STING-activating nanoparticles (STING-NPs)-rationally designed polymersomes for enhanced cytosolic delivery of the endogenous CDN ligand for STING, 2'3' cyclic guanosine monophosphate-adenosine monophosphate (cGAMP). STING-NPs increase the biological potency of cGAMP, enhance STING signalling in the tumour microenvironment and sentinel lymph node, and convert immunosuppressive tumours to immunogenic, tumoricidal microenvironments. This leads to enhanced therapeutic efficacy of cGAMP, inhibition of tumour growth, increased rates of long-term survival, improved response to immune checkpoint blockade and induction of immunological memory that protects against tumour rechallenge. We validate STING-NPs in freshly isolated human melanoma tissue, highlighting their potential to improve clinical outcomes of immunotherapy.


Assuntos
Endossomos/metabolismo , Imunoterapia , Proteínas de Membrana/agonistas , Neoplasias/imunologia , Neoplasias/terapia , Polímeros/metabolismo , Animais , Citosol/metabolismo , Feminino , Humanos , Inflamação/patologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Nanopartículas/ultraestrutura , Metástase Neoplásica , Nucleotídeos Cíclicos/metabolismo , Linfócitos T/imunologia , Microambiente Tumoral
12.
Biomater Sci ; 7(2): 547-559, 2019 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-30379158

RESUMO

RNA agonists of the retinoic acid gene I (RIG-I) pathway have recently emerged as a promising class of cancer immunotherapeutics, but their efficacy is hindered by drug delivery barriers, including nuclease degradation, poor intracellular uptake, and minimal access to the cytosol where RIG-I is localized. Here, we explore the application of pH-responsive, endosomolytic polymer nanoparticles (NPs) to enhance the cytosolic delivery and immunostimulatory activity of synthetic 5' triphosphate, short, double-stranded RNA (3pRNA), a ligand for RIG-I. Delivery of 3pRNA with pH-responsive NPs with an active endosomal escape mechanism, but not control carriers lacking endosomolytic activity, significantly increased the activity of 3pRNA in dendritic cells, macrophages, and cancer cell lines. In a CT26 colon cancer model, activation of RIG-I via NP delivery of 3pRNA induced immunogenic cell death, triggered expression of type I interferon and pro-inflammatory cytokines, and increased CD8+ T cell infiltration into the tumor microenvironment. Consequently, intratumoral (IT) delivery of NPs loaded with 3pRNA inhibited CT26 tumor growth and enhanced the therapeutic efficacy of anti-PD-1 immune checkpoint blockade, resulting in a 30% complete response rate and generation of immunological memory that protected against tumor rechallenge. Collectively, these studies demonstrate that pH-responsive NPs can be harnessed to strongly enhance the immunostimulatory activity and therapeutic efficacy of 3pRNA and establish endosomal escape as a critical parameter in the design of carriers for immunotherapeutic targeting of the RIG-I pathway.


Assuntos
Proteína DEAD-box 58/metabolismo , Endossomos/metabolismo , Imunoterapia , Nanopartículas/química , Polifosfatos/química , RNA/química , RNA/farmacologia , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Morte Celular/efeitos dos fármacos , Morte Celular/imunologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Citocinas/biossíntese , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Feminino , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Nanopartículas/metabolismo , Polimerização , Receptores Imunológicos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
13.
Biomaterials ; 182: 82-91, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30107272

RESUMO

Cancer vaccines targeting patient-specific tumor neoantigens have recently emerged as a promising component of the rapidly expanding immunotherapeutic armamentarium. However, neoantigenic peptides typically elicit weak CD8+ T cell responses, and so there is a need for universally applicable vaccine delivery strategies to enhance the immunogenicity of these peptides. Ideally, such vaccines could also be rapidly fabricated using chemically synthesized peptide antigens customized to an individual patient. Here, we describe a strategy for simple and rapid packaging of peptide antigens into pH-responsive nanoparticles with endosomal escape activity. Electrostatically-stabilized polyplex nanoparticles (nanoplexes) can be assembled instantaneously by mixing decalysine-modified antigenic peptides and poly(propylacrylic acid) (pPAA), a polyanion with pH-dependent, membrane destabilizing activity. These nanoplexes increase and prolong antigen uptake and presentation on MHC-I (major histocompatibility complex class I) molecules expressed by dendritic cells, resulting in enhanced activation of CD8+ T cells. Using an intranasal immunization route, nanoplex vaccines inhibit formation of lung metastases in a murine melanoma model. Additionally, nanoplex vaccines strongly synergize with the adjuvant α-galactosylceramide (α-GalCer) in stimulating robust CD8+ T cell responses, significantly increasing survival time in mice with established melanoma tumors. Collectively, these findings demonstrate that peptide/pPAA nanoplexes offer a facile and versatile platform for enhancing CD8+ T cell responses to peptide antigens, with potential to complement ongoing advancements in the development of neoantigen-targeted cancer vaccines.


Assuntos
Acrilatos/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Melanoma/patologia , Nanoconjugados/uso terapêutico , Peptídeos/uso terapêutico , Polímeros/uso terapêutico , Acrilatos/administração & dosagem , Acrilatos/imunologia , Administração Intranasal , Animais , Apresentação de Antígeno/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Linhagem Celular , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Neoplasias Pulmonares/imunologia , Masculino , Melanoma/imunologia , Melanoma/terapia , Camundongos , Camundongos Endogâmicos C57BL , Nanoconjugados/administração & dosagem , Peptídeos/administração & dosagem , Peptídeos/imunologia , Polímeros/administração & dosagem
14.
Infect Immun ; 85(3)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28052995

RESUMO

The receptor for advanced glycation end products (RAGE) is a pattern recognition receptor capable of recognizing multiple pathogen-associated and danger-associated molecular patterns that contributes to the initiation and potentiation of inflammation in many disease processes. During infection, RAGE functions to either exacerbate disease severity or enhance pathogen clearance depending on the pathogen studied. Acinetobacter baumannii is an opportunistic human pathogen capable of causing severe infections, including pneumonia and sepsis, in impaired hosts. The role of RAGE signaling in response to opportunistic bacterial infections is largely unknown. In murine models of A. baumannii pneumonia, RAGE signaling alters neither inflammation nor bacterial clearance. In contrast, RAGE-/- mice systemically infected with A. baumannii exhibit increased survival and reduced bacterial burdens in the liver and spleen. The increased survival of RAGE-/- mice is associated with increased circulating levels of the anti-inflammatory cytokine interleukin-10 (IL-10). Neutralization of IL-10 in RAGE-/- mice results in decreased survival during systemic A. baumannii infection that mirrors that of wild-type (WT) mice, and exogenous IL-10 administration to WT mice enhances survival in this model. These findings demonstrate the role for RAGE-dependent IL-10 suppression as a key modulator of mortality from Gram-negative sepsis.


Assuntos
Infecções por Acinetobacter/metabolismo , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/fisiologia , Interleucina-10/biossíntese , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Sepse , Infecções por Acinetobacter/imunologia , Infecções por Acinetobacter/mortalidade , Animais , Modelos Animais de Doenças , Feminino , Imunidade Inata , Estimativa de Kaplan-Meier , Contagem de Leucócitos , Camundongos , Camundongos Knockout , Receptor para Produtos Finais de Glicação Avançada/genética , Índice de Gravidade de Doença , Transdução de Sinais
15.
FEMS Microbiol Rev ; 38(6): 1235-49, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25211180

RESUMO

Metals are required cofactors for numerous fundamental processes that are essential to both pathogen and host. They are coordinated in enzymes responsible for DNA replication and transcription, relief from oxidative stress, and cellular respiration. However, excess transition metals can be toxic due to their ability to cause spontaneous, redox cycling and disrupt normal metabolic processes. Vertebrates have evolved intricate mechanisms to limit the availability of some crucial metals while concurrently flooding sites of infection with antimicrobial concentrations of other metals. To compete for limited metal within the host while simultaneously preventing metal toxicity, pathogens have developed a series of metal regulatory, acquisition, and efflux systems. This review will cover the mechanisms by which pathogenic bacteria recognize and respond to host-induced metal scarcity and toxicity.


Assuntos
Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Metais/metabolismo , Metais/toxicidade , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Infecções Bacterianas/imunologia , Vacinas Bacterianas , Homeostase/efeitos dos fármacos , Humanos
16.
Proteomics ; 14(7-8): 820-828, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23754577

RESUMO

Imaging MS is routinely used to show spatial localization of proteins within a tissue sample and can also be employed to study temporal protein dynamics. The antimicrobial S100 protein calprotectin, a heterodimer of subunits S100A8 and S100A9, is an abundant cytosolic component of neutrophils. Using imaging MS, calprotectin can be detected as a marker of the inflammatory response to bacterial challenge. In a murine model of Acinetobacter baumannii pneumonia, protein images of S100A8 and S100A9 collected at different time points throughout infection aid in visualization of the innate immune response to this pathogen. Calprotectin is detectable within 6 h of infection as immune cells respond to the invading pathogen. As the bacterial burden decreases, signals from the inflammatory proteins decrease. Calprotectin is no longer detectable 96-144 h post infection, correlating to a lack of detectable bacterial burden in lungs. These experiments provide a label-free, multiplexed approach to study host response to a bacterial threat and eventual clearance of the pathogen over time.


Assuntos
Calgranulina A/isolamento & purificação , Calgranulina B/isolamento & purificação , Complexo Antígeno L1 Leucocitário/isolamento & purificação , Pulmão/patologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Infecções por Acinetobacter/diagnóstico , Infecções por Acinetobacter/genética , Infecções por Acinetobacter/patologia , Acinetobacter baumannii/isolamento & purificação , Acinetobacter baumannii/patogenicidade , Animais , Calgranulina A/genética , Calgranulina B/genética , Humanos , Imunidade Inata , Pulmão/microbiologia , Camundongos , Imagem Molecular , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Proteômica
17.
Infect Immun ; 81(2): 542-51, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23230287

RESUMO

Acinetobacter baumannii is a leading cause of multidrug-resistant infections worldwide. This organism poses a particular challenge due to its ability to acquire resistance to new antibiotics through adaptation or mutation. This study was undertaken to determine the mechanisms governing the adaptability of A. baumannii to the antibiotic colistin. Screening of a transposon mutant library identified over 30 genes involved in inducible colistin resistance in A. baumannii. One of the genes identified was lpsB, which encodes a glycosyltransferase involved in lipopolysaccharide (LPS) synthesis. We demonstrate that loss of LpsB function results in increased sensitivity to both colistin and cationic antimicrobial peptides of the innate immune system. Moreover, LpsB is critical for pathogenesis in a pulmonary model of infection. Taken together, these data define bacterial processes required for intrinsic colistin tolerance in A. baumannii and underscore the importance of outer membrane structure in both antibiotic resistance and the pathogenesis of A. baumannii.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Colistina/farmacologia , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/genética , Infecções por Acinetobacter/imunologia , Acinetobacter baumannii/imunologia , Animais , Antibacterianos/imunologia , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Colistina/imunologia , Farmacorresistência Bacteriana Múltipla , Feminino , Glicosiltransferases/genética , Glicosiltransferases/imunologia , Tolerância Imunológica/genética , Tolerância Imunológica/imunologia , Imunidade Inata/genética , Imunidade Inata/imunologia , Lipopolissacarídeos/genética , Lipopolissacarídeos/imunologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/microbiologia , Manosiltransferases/genética , Manosiltransferases/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Mutação/imunologia , Pneumonia/genética , Pneumonia/imunologia , Pneumonia/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...