Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 121(4): 1284-1297, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38240126

RESUMO

Product association of host-cell proteins (HCPs) to monoclonal antibodies (mAbs) is widely regarded as a mechanism that can enable HCP persistence through multiple purification steps and even into the final drug substance. Discussion of this mechanism often implies that the existence or extent of persistence is directly related to the strength of binding but actual measurements of the binding affinity of such interactions remain sparse. Two separate avenues of investigation of HCP-mAb binding are reported here. One is the measurement of the affinity of binding of individual, commonly persistent Chinese hamster ovary (CHO) HCPs to each of a set of mAbs, and the other uses quantitative proteomic measurements to assess binding of HCPs in a null CHO harvested cell culture fluid (HCCF) to mAbs produced in the same cell line. The individual HCP measurements show that the binding affinities of individual HCPs to different mAbs can vary appreciably but are rarely very high, with only weak pH dependence. The measurements on the null HCCF allow estimation of individual HCP-mAb affinities; these are typically weaker than those seen in affinity measurements on isolated HCPs. Instead, the extent of binding appears correlated with the initial abundance of individual HCPs in the HCCF and the forms of the HCPs in the solution, i.e., whether HCPs are present as free molecules or as parts of large aggregates. Separate protein A chromatography experiments performed by feeding different fractions of a mAb-containing HCCF obtained by size-exclusion chromatography (SEC) showed clear differences in the number and identity of HCPs found in the protein A eluate. These results indicate a significant role for HCP-mAb association in determining HCP persistence through protein A chromatography, presumably through binding of HCP-mAb complexes to the resin. Overall, the results illustrate the importance of considering more fully the biophysical context of HCP-product association in assessing the factors that may affect the phenomenon and determine its implications. Knowledge of the abundances and the forms of individual or aggregated HCPs in HCCF are particularly significant, emphasizing the integration of upstream and downstream bioprocessing and the importance of understanding the collective properties of HCPs in addition to just the biophysical properties of individual HCPs.


Assuntos
Anticorpos Monoclonais , Proteômica , Cricetinae , Animais , Cricetulus , Proteômica/métodos , Células CHO , Anticorpos Monoclonais/química , Cromatografia em Gel , Proteína Estafilocócica A/química
2.
Nat Commun ; 14(1): 7299, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37949871

RESUMO

Resorbable, implantable bioelectronic devices are emerging as powerful tools to reliably monitor critical physiological parameters in real time over extended periods. While degradable magnesium-based electronics have pioneered this effort, relatively short functional lifetimes have slowed clinical translation. Barrier films that are both flexible and resorbable over predictable timelines would enable tunability in device lifetime and expand the viability of these devices. Herein, we present a library of stereocontrolled succinate-based copolyesters which leverage copolymer composition and processing method to afford tunability over thermomechanical, crystalline, and barrier properties. One copolymer composition within this library has extended the functional lifetime of transient bioelectronic prototypes over existing systems by several weeks-representing a considerable step towards translational devices.


Assuntos
Eletrônica , Polímeros , Polímeros/química
3.
Anal Chim Acta ; 1283: 341963, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37977787

RESUMO

Polymer thin films are often used in transdermal patches as a method of continuous drug administration for patients with chronic illness. Understanding the drug segregation and distribution within these films is important for monitoring proper drug release over time. Surface-layer matrix-assisted laser desorption/ionization mass spectrometry imaging (SL-MALDI-MSI) is a unique analytical technique that provides an optical representation of chemical compositions that exist at the surface of polymeric materials. Solvent-free sublimation is employed for application of matrix to the sample surface, so that only molecules in direct contact with the matrix layer are detected. Here, these methodologies are utilized to visualize variations in drug concentration at both the air and substrate interface in pharmaceutical-loaded polymer films.


Assuntos
Polímeros , Ureia , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Preparações Farmacêuticas , Lasers
4.
Nat Commun ; 14(1): 4838, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563117

RESUMO

Polymers are ubiquitous to almost every aspect of modern society and their use in medical products is similarly pervasive. Despite this, the diversity in commercial polymers used in medicine is stunningly low. Considerable time and resources have been extended over the years towards the development of new polymeric biomaterials which address unmet needs left by the current generation of medical-grade polymers. Machine learning (ML) presents an unprecedented opportunity in this field to bypass the need for trial-and-error synthesis, thus reducing the time and resources invested into new discoveries critical for advancing medical treatments. Current efforts pioneering applied ML in polymer design have employed combinatorial and high throughput experimental design to address data availability concerns. However, the lack of available and standardized characterization of parameters relevant to medicine, including degradation time and biocompatibility, represents a nearly insurmountable obstacle to ML-aided design of biomaterials. Herein, we identify a gap at the intersection of applied ML and biomedical polymer design, highlight current works at this junction more broadly and provide an outlook on challenges and future directions.


Assuntos
Materiais Biocompatíveis , Polímeros
5.
Adv Mater ; 35(41): e2302163, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37399511

RESUMO

Most elastomers undergo strain-induced crystallization (SIC) under tension; as individual chains are held rigidly in a fixed position by an applied strain, their alignment along the strain field results in a shift from strain-hardening (SH) to SIC. A similar degree of stretching is associated with the tension necessary to accelerate mechanically coupled, covalent chemical responses of mechanophores in overstretched chains, raising the possibility of an interplay between the macroscopic response of SIC and the molecular response of mechanophore activation. Here, thiol-yne-derived stereoelastomers doped covalently with a dipropiolate-derivatized spiropyran (SP) mechanophore (0.25-0.38 mol%) are reported. The material properties of SP-containing films are consistent with undoped controls, indicating that the SP is a reporter of the mechanical state of the polymer. Uniaxial tensile tests reveal correlations between mechanochromism and SIC, which are strain-rate-dependent. When mechanochromic films are stretched slowly to the point of mechanophore activation, the covalently tethered mechanophore remains trapped in a force-activated state, even after the applied stress is removed. Mechanophore reversion kinetics correlate with the applied strain rate, resulting in highly tunable decoloration rates. Because these polymers are not covalently crosslinked, they are recyclable by melt-pressing into new films, increasing their potential range of strain-sensing, morphology-sensing, and shape-memory applications.

6.
J Funct Biomater ; 14(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37504845

RESUMO

The objective of this research was to create and appraise biodegradable polymer-based nanofibers containing distinct concentrations of calcium trimetaphosphate (Ca-TMP) for periodontal tissue engineering. Poly(ester urea) (PEU) (5% w/v) solutions containing Ca-TMP (15%, 30%, 45% w/w) were electrospun into fibrous scaffolds. The fibers were evaluated using SEM, EDS, TGA, FTIR, XRD, and mechanical tests. Degradation rate, swelling ratio, and calcium release were also evaluated. Cell/Ca-TMP and cell/scaffold interaction were assessed using stem cells from human exfoliated deciduous teeth (SHEDs) for cell viability, adhesion, and alkaline phosphatase (ALP) activity. Analysis of variance (ANOVA) and post-hoc tests were used (α = 0.05). The PEU and PEU/Ca-TMP-based membranes presented fiber diameters at 469 nm and 414-672 nm, respectively. Chemical characterization attested to the Ca-TMP incorporation into the fibers. Adding Ca-TMP led to higher degradation stability and lower dimensional variation than the pure PEU fibers; however, similar mechanical characteristics were observed. Minimal calcium was released after 21 days of incubation in a lipase-enriched solution. Ca-TMP extracts enhanced cell viability and ALP activity, although no differences were found between the scaffold groups. Overall, Ca-TMP was effectively incorporated into the PEU fibers without compromising the morphological properties but did not promote significant cell function.

7.
Front Cell Dev Biol ; 11: 1155882, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37255596

RESUMO

Cell migration plays an essential role in physiological and pathological states, such as immune response, tissue generation and tumor development. This phenomenon can occur spontaneously or it can be triggered by an external stimuli, including biochemical, mechanical, or electrical cues that induce or direct cells to migrate. The migratory response to these cues is foundational to several fields including neuroscience, cancer and regenerative medicine. Various platforms are available to qualitatively and quantitatively measure cell migration, making the measurements of cell motility straight-forward. Migratory behavior must be analyzed by multiple metrics and then models to connect the measurements to physiological meaning. This review will focus on describing and quantifying cell movement for individual cell migration.

8.
Biotechnol Bioeng ; 120(4): 1068-1080, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36585356

RESUMO

In the production of biopharmaceuticals such as monoclonal antibodies (mAbs) and vaccines, the residual amounts of host-cell proteins (HCPs) are among the critical quality attributes. In addition to overall HCP levels, individual HCPs may elude purification, potentially causing issues in product stability or patient safety. Such HCP persistence has been attributed mainly to biophysical interactions between individual HCPs and the product, resin media, or residual chromatin particles. Based on measurements on process streams from seven mAb processes, we have found that HCPs in aggregates, not necessarily chromatin-derived, may play a significant role in the persistence of many HCPs. Such aggregates may also hinder accurate detection of HCPs using existing proteomics methods. The findings also highlight that certain HCPs may be difficult to remove because of their functional complementarity to the product; specifically, chaperones and other proteins involved in the unfolded protein response (UPR) are disproportionately present in the aggregates. The methods and findings described here expand our understanding of the origins and potential behavior of HCPs in cell-based biopharmaceutical processes and may be instrumental in improving existing techniques for HCP detection and clearance.


Assuntos
Produtos Biológicos , Agregados Proteicos , Cricetinae , Animais , Humanos , Cricetulus , Anticorpos Monoclonais , Proteômica/métodos , Células CHO
9.
Biomaterials ; 292: 121940, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493714

RESUMO

Intraperitoneal adhesions (IAs) are a major complication arising from abdominal repair surgeries, including hernia repair procedures. Herein, we fabricated a composite mesh device using a macroporous monofilament polypropylene mesh and a degradable elastomer coating designed to meet the requirements of this clinical application. The degradable elastomer was synthesized using an organo-base catalyzed thiol-yne addition polymerization that affords independent control of degradation rate and mechanical properties. The elastomeric coating was further enhanced by the covalent tethering of antifouling zwitterion molecules. Mechanical testing demonstrated the elastomer forms a robust coating on the polypropylene mesh does not exhibit micro-fractures, cracks or mechanical delamination under cyclic fatigue testing that exceeds peak abdominal loads (50 N/cm). Quartz crystal microbalance measurements showed the zwitterionic functionalized elastomer further reduced fibrinogen adsorption by 73% in vitro when compared to unfunctionalized elastomer controls. The elastomer exhibited degradation with limited tissue response in a 10-week murine subcutaneous implantation model. We also evaluated the composite mesh in an 84-day study in a rabbit cecal abrasion hernia adhesion model. The zwitterionic composite mesh significantly reduced the extent and tenacity of IAs by 94% and 90% respectively with respect to uncoated polypropylene mesh. The resulting composite mesh device is an excellent candidate to reduce complications related to abdominal repair through suppressed fouling and adhesion formation, reduced tissue inflammation, and appropriate degradation rate.


Assuntos
Polipropilenos , Telas Cirúrgicas , Coelhos , Camundongos , Animais , Telas Cirúrgicas/efeitos adversos , Adesivos , Elastômeros , Implantes Absorvíveis , Aderências Teciduais/prevenção & controle , Aderências Teciduais/etiologia , Hérnia/prevenção & controle
10.
Nanoscale ; 14(45): 16845-16856, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36331392

RESUMO

Printed carbon nanotube thin-film transistors (CNT-TFTs) are candidates for flexible electronics with printability on a wide range of substrates. Among the layers comprising a CNT-TFT, the gate dielectric has proven most difficult to additively print owing to challenges in film uniformity, thickness, and post-processing requirements. Printed ionic dielectrics show promise for addressing these issues and yielding devices that operate at low voltages thanks to their high-capacitance electric double layers. However, the printing of ionic dielectrics in their various compositions is not well understood, nor is the impact of certain stresses on these materials. In this work, we studied three compositionally distinct ionic dielectrics in fully printed CNT-TFTs: the polar-fluorinated polymer elastomer PVDF-HFP; an ion gel consisting of triblock polymer PS-PMMA-PS and ionic liquid EMIM-TFSI; and crystalline nanocellulose (CNC) with a salt concentration of 0.05%. Although ion gel has been thoroughly studied, e-PVDF-HFP and CNC printing are relatively new and this study provides insights into their ink formulation, print processing, and performance as gate dielectrics. Using a consistent aerosol jet printing approach, each ionic dielectric was printed into similar CNT-TFTs, allowing for direct comparison through extensive characterization, including mechanical and electrical stress tests. The ionic dielectrics were found to have distinct operational dependencies based on their compositional and ionic attributes. Overall, the results reveal a number of trade-offs that must be managed when selecting a printable ionic dielectric, with CNC showing the strongest performance for low-voltage operation but the ion gel and elastomer exhibiting better stability under bias and mechanical stresses.

11.
Nat Commun ; 13(1): 6518, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316354

RESUMO

Physically transient forms of electronics enable unique classes of technologies, ranging from biomedical implants that disappear through processes of bioresorption after serving a clinical need to internet-of-things devices that harmlessly dissolve into the environment following a relevant period of use. Here, we develop a sustainable manufacturing pathway, based on ultrafast pulsed laser ablation, that can support high-volume, cost-effective manipulation of a diverse collection of organic and inorganic materials, each designed to degrade by hydrolysis or enzymatic activity, into patterned, multi-layered architectures with high resolution and accurate overlay registration. The technology can operate in patterning, thinning and/or cutting modes with (ultra)thin eco/bioresorbable materials of different types of semiconductors, dielectrics, and conductors on flexible substrates. Component-level demonstrations span passive and active devices, including diodes and field-effect transistors. Patterning these devices into interconnected layouts yields functional systems, as illustrated in examples that range from wireless implants as monitors of neural and cardiac activity, to thermal probes of microvascular flow, and multi-electrode arrays for biopotential sensing. These advances create important processing options for eco/bioresorbable materials and associated electronic systems, with immediate applicability across nearly all types of bioelectronic studies.


Assuntos
Implantes Absorvíveis , Eletrônica , Semicondutores , Eletrodos , Lasers
12.
ACS Appl Mater Interfaces ; 14(34): 38436-38447, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35977091

RESUMO

Poly(propylene fumarate) star polymers photochemically 3D printed with degradable thiol cross-linkers yielded highly tunable biodegradable polymeric materials. Tailoring the alkene:thiol ratio (5:1, 10:1, 20:1 and 30:1) and thus the cross-link density within the PPF star systems yielded a wide variation of both the mechanical and degradation properties of the printed materials. Fundamental trends were established between the polymer network cross-link density, glass transition temperature, and tensile and thermomechanical properties of the materials. The tensile properties of the PPF star-based systems were compared to commercial state-of-the-art non-degradable polymer resins. The thiolene-cross-linked materials are fully degradable and possess properties over a wide range of mechanical properties relevant to regenerative medicine applications.

13.
Biomacromolecules ; 23(6): 2635-2646, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35656981

RESUMO

Peripheral nerve regeneration across large gaps remains clinically challenging and scaffold design plays a key role in nerve tissue engineering. One strategy to encourage regeneration has utilized nanofibers or conduits to exploit contact guidance within the neural regenerative milieu. Herein, we report the effect of nanofiber topography on two key aspects of regeneration: Schwann cell migration and neurite extension. Substrates possessing distinct diameter distributions (300 ± 40 to 900 ± 70 nm) of highly aligned poly(ε-caprolactone) nanofibers were fabricated by touch-spinning. Cell migratory behavior and contact guidance were then evaluated both at the tissue level using dorsal root ganglion tissue explants and the cellular level using dissociated Schwann cells. Explant studies showed that Schwann cells emigrated significantly farther on fibers than control. However, both Schwann cells and neurites emigrated from the tissue explants directionally along the fibers regardless of their diameter, and the data were characterized by high variation. At the cellular level, dissociated Schwann cells demonstrated biased migration in the direction of fiber alignment and exhibited a significantly higher biased velocity (0.2790 ± 0.0959 µm·min-1) on 900 ± 70 nm fibers compared to other nanofiber groups and similar to the velocity found during explant emigration on 900 nm fibers. Therefore, aligned, nanofibrous scaffolds of larger diameters (900 ± 70 nm) may be promising materials to enhance various aspects of nerve regeneration via contact guidance alone. While cells track along with the fibers, this contact guidance is bidirectional along the fiber, moving in the plane of alignment. Therefore, the next critical step to direct regeneration is to uncover haptotactic cues that enhance directed migration.


Assuntos
Nanofibras , Gânglios Espinais , Nanofibras/química , Regeneração Nervosa , Células de Schwann , Engenharia Tecidual , Alicerces Teciduais/química , Tato
14.
Biomacromolecules ; 23(6): 2388-2395, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35512280

RESUMO

Additive manufacturing is rapidly advancing tissue engineering, but the scope of its clinical translation is limited by a lack of materials designed to meet specific mechanical properties and resorption timelines. Materials that are printable via photochemical cross-linking, fully degradable, and elastomeric have proven to be particularly challenging to develop. Herein, we report the synthesis of a series of poly(propylene fumarate-b-γ-methyl-ε-caprolactone-b-propylene fumarate) ABA triblock polymers using sequential ring-opening polymerization and ring-opening copolymerization. When cross-linked photochemically using a continuous liquid interface production digital light processing Carbon M2 printer, these ABA-type triblock copolymers are durable elastomers with tunable degradation and elastic properties. The polymers are shown to undergo slow, hydrolytic degradation in vitro with minimal loss of mechanical performance during degradation.


Assuntos
Materiais Biocompatíveis , Elastômeros , Materiais Biocompatíveis/química , Elastômeros/química , Fumaratos , Polímeros/química , Polipropilenos
16.
Biomacromolecules ; 23(5): 2106-2115, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35471033

RESUMO

Additive manufacturing affords the construction of complex scaffolds for tissue engineering, yet the limitation in material choice remains a barrier to clinical translation. Herein, a series of poly(propylene fumarate-co-propylene succinate) were synthesized using both one-pot and sequential ring-opening copolymerization reactions. Continuous liquid interface production-based photochemical 3D printing utilizing thiol-ene chemistry was used to fabricate precise structures with improved build time over the traditional poly(propylene fumarate)/diethyl fumarate 3D printing processes. Significantly, the materials do not exhibit a yield point under tension and Young's modulus of the 3D printed products can be tuned by more than 2 orders of magnitude (0.6-110 MPa) using polymer composition and the degree of polymerization. Printed constructs degrade fully under hydrolytic conditions and degradation rates can be tailored using polymer composition, polymer sequence, and resin formulation.


Assuntos
Materiais Biocompatíveis , Alicerces Teciduais , Materiais Biocompatíveis/química , Teste de Materiais , Polímeros , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais/química
17.
Chem Sci ; 13(8): 2475-2480, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35310510

RESUMO

Supramolecular nanotubes prepared through macrocycle assembly offer unique properties that stem from their long-range order, structural predictability, and tunable microenvironments. However, assemblies that rely on weak non-covalent interactions often have limited aspect ratios and poor mechanical integrity, which diminish their utility. Here pentagonal imine-linked macrocycles are prepared by condensing a pyridine-containing diamine and either terephthalaldehyde or 2,3,5,6-tetrafluoroterephthalaldehyde. Atomic force microscopy and synchrotron in solvo X-ray diffraction demonstrate that protonation of the pyridine groups drives assembly into high-aspect ratio nanotube assemblies. A 1 : 1 mixture of each macrocycle yielded nanotubes with enhanced crystallinity upon protonation. UV-Vis and fluorescence spectroscopy indicate that nanotubes containing both arene and perfluoroarene subunits display spectroscopic signatures of arene-perfluoroarene interactions. Touch-spun polymeric fibers containing assembled nanotubes prepared from the perhydro- or perfluorinated macrocycles exhibited Young's moduli of 1.09 and 0.49 GPa, respectively. Fibers containing nanotube assemblies reinforced by arene-perfluoroarene interactions yielded a 93% increase in the Young's modulus over the perhydro derivative, up to 2.1 GPa. These findings demonstrate that tuning the chemical composition of the monomeric macrocycles can have profound effects on the mechanical strength of the resulting assemblies. More broadly, these results will inspire future studies into tuning orthogonal non-covalent interactions between macrocycles to yield nanotubes with emergent functions and technological potential.

18.
Angew Chem Int Ed Engl ; 61(17): e202115904, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35167725

RESUMO

The remarkable elasticity and tensile strength found in natural elastomers are challenging to mimic. Synthetic elastomers typically feature covalently cross-linked networks (rubbers), but this hinders their reprocessability. Physical cross-linking via hydrogen bonding or ordered crystallite domains can afford reprocessable elastomers, but often at the cost of performance. Herein, we report the synthesis of ultra-tough, reprocessable elastomers based on linear alternating polymers. The incorporation of a rigid isohexide adjacent to urethane moieties affords elastomers with exceptional strain hardening, strain rate dependent behavior, and high optical clarity. Distinct differences were observed between isomannide and isosorbide-based elastomers where the latter displays superior tensile strength and strain recovery. These phenomena are attributed to the regiochemical irregularities in the polymers arising from their distinct stereochemistry and respective inter-chain hydrogen bonding.


Assuntos
Elastômeros , Isossorbida , Elastômeros/química , Ligação de Hidrogênio , Isossorbida/química
19.
Biomacromolecules ; 23(3): 1205-1213, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35044744

RESUMO

Biodegradable shape memory elastomers have the potential for use in soft tissue engineering, drug delivery, and device fabrication applications. Unfortunately, few materials are able to meet the targeted degradation and mechanical properties needed for long-term implantable devices. In order to overcome these limitations, we have designed and synthesized a series of unsaturated polyurethanes that are elastic, degradable, and nontoxic to cells in vitro. The polymerization included a nucleophilic thiol-yne Michael addition between a urethane-based dipropiolate and a dithiol to yield an α,ß-unsaturated carbonyl moiety along the polymer backbone. The alkene stereochemistry of the materials was tuned between 32 and 82% cis content using a combination of an organic base and solvent polarity, which collectively direct the nucleophilic addition. The bulk properties such as tensile strength, modulus, and glass transition temperature can also be tuned broadly, and the hydrogen bonding imparted by the urethane moiety allows for these materials to elicit cyclic shape memory behavior. We also demonstrated that the in vitro degradation properties are highly dependent on the alkene stereochemistry.


Assuntos
Materiais Biocompatíveis , Poliuretanos , Alcenos , Materiais Biocompatíveis/química , Elastômeros/química , Teste de Materiais , Poliuretanos/química , Compostos de Sulfidrila
20.
J Am Chem Soc ; 144(3): 1243-1250, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35029980

RESUMO

Stereochemistry in polymers can be used as an effective tool to control the mechanical and physical properties of the resulting materials. Typically, though, in synthetic polymers, differences among polymer stereoisomers leads to incremental property variation, i.e., no changes to the baseline plastic or elastic behavior. Here we show that stereochemical differences in sugar-based monomers yield a family of nonsegmented, alternating polyurethanes that can be either strong amorphous thermoplastic elastomers with properties that exceed most cross-linked rubbers or robust, semicrystalline thermoplastics with properties comparable to commercial plastics. The stereochemical differences in the monomers direct distinct intra- and interchain supramolecular hydrogen-bonding interactions in the bulk materials to define their behavior. The chemical similarity among these isohexide-based polymers enables both statistical copolymerization and blending, which each afford independent control over degradability and mechanical properties. The modular molecular design of the polymers provides an opportunity to create a family of materials with divergent properties that possess inherently built degradability and outstanding mechanical performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...