Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Evol ; 66(2): 138-50, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18274696

RESUMO

We study here the evolution of genes located in the same physical locus using the recently sequenced Ha locus in seven wheat genomes in diploid, tetraploid, and hexaploid species and compared them with barley and rice orthologous regions. We investigated both the conservation of microcolinearity and the molecular evolution of genes, including coding and noncoding sequences. Microcolinearity is restricted to two groups of genes (Unknown gene-2, VAMP, BGGP, Gsp-1, and Unknown gene-8 surrounded by several copies of ATPase), almost conserved in rice and barley, but in a different relative position. Highly conserved genes between wheat and rice run along with genes harboring different copy numbers and highly variable sequences between close wheat genomes. The coding sequence evolution appeared to be submitted to heterogeneous selective pressure and intronic sequences analysis revealed that the molecular clock hypothesis is violated in most cases.


Assuntos
Evolução Molecular , Genes de Plantas/genética , Hordeum/genética , Triticum/genética , Sequência de Bases , Cromossomos Artificiais Bacterianos/genética , Cromossomos de Plantas/genética , Códon/genética , Sequência Conservada , DNA Intergênico/genética , Íntrons/genética , Dados de Sequência Molecular , Oryza/genética
2.
Theor Appl Genet ; 114(7): 1265-75, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17318494

RESUMO

Bread wheat (Triticum aestivum), one of the world's major crops, is genetically very diverse. In order to select a representative sample of the worldwide wheat diversity, 3,942 accessions originating from 73 countries were analysed with a set of 38 genomic simple sequence repeat (SSR) markers. The number of alleles at each locus ranged from 7 to 45 with an average of 23.9 alleles per locus. The 908 alleles detected were used together with passport data to select increasingly large sub-samples that maximised both the number of observed alleles at SSR loci and the number of geographical origins. A final core of 372 accessions (372CC) was selected with this M strategy. All the different geographical areas and more than 98% of the allelic diversity at the 38 polymorphic loci were represented in this core. The method used to build the core was validated, by using a second set of independent markers [44 expressed sequence tag (EST)-SSR markers] on a larger sample of 744 accessions: 96.74% of the alleles observed at these loci had already been captured in the 372CC. So maximizing the diversity with a first set of markers also maximised the diversity at a second independent set of locus. To relate the genetic structure of wheat germplasm to its geographical origins, the two sets of markers were used to compute a dissimilarity matrix between geographical groups. Current worldwide wheat diversity is clearly divided according to wheat's European and Asian origins, whereas the diversity within each geographical group might be the result of the combined effects of adaptation of an initial germplasm to different environmental conditions and specific breeding practices. Seeds from each accession of the 372CC were multiplied and are now available to the scientific community. The genomic DNA of the 372CC, which can be entirely contained in a 384-deep-well storage plate, will be a useful tool for future studies of wheat genetic diversity.


Assuntos
Repetições de Microssatélites , Triticum/genética , Alelos , Pão , Cruzamentos Genéticos , DNA de Plantas , Etiquetas de Sequências Expressas , Genes de Plantas , Variação Genética , Genoma de Planta , Modelos Genéticos , Polimorfismo Genético
3.
Genome ; 49(9): 1131-9, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17110993

RESUMO

Information on single-nucleotide polymorphisms (SNPs) in hexaploid bread wheat is still scarce. The goal of this study was to detect SNPs in wheat and examine their frequency. Twenty-six bread wheat lines from different origins worldwide were used. Specific PCR-products were obtained from 21 genes and directly sequenced. SNPs were discovered from the alignment of these sequences. The overall sequence polymorphism observed in this sample appears to be low; 64 single-base polymorphisms were detected in approximately 21.5 kb (i.e., 1 SNP every 335 bp). The level of polymorphism is highly variable among the different genes studied. Fifty percent of the genes studied contained no sequence polymorphism, whereas most SNPs detected were located in only 2 genes. As expected, taking into account a synthetic line created with a wild Triticum tauschii parent increases the level of polymorphism (101 SNPs; 1 SNP every 212 bp). The detected SNPs are available at http://urgi.versailles.inra.fr/GnpSNP">http://urgi.versailles.inra.fr/GnpSNP. Data on linkage disequilibrium (LD) are still preliminary. They showed a significant level of LD in the 2 most polymorphic genes. To conclude, the genome size of hexaploid wheat and its low level of polymorphism complicate SNP discovery in this species.


Assuntos
Frequência do Gene , Polimorfismo de Nucleotídeo Único , Triticum/genética , Pão , Bases de Dados de Ácidos Nucleicos , Deleção de Genes , Genoma de Planta , Haplótipos , Desequilíbrio de Ligação , Poliploidia
4.
Plant Cell ; 17(4): 1033-45, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15749759

RESUMO

The Hardness (Ha) locus controls grain hardness in hexaploid wheat (Triticum aestivum) and its relatives (Triticum and Aegilops species) and represents a classical example of a trait whose variation arose from gene loss after polyploidization. In this study, we investigated the molecular basis of the evolutionary events observed at this locus by comparing corresponding sequences of diploid, tertraploid, and hexaploid wheat species (Triticum and Aegilops). Genomic rearrangements, such as transposable element insertions, genomic deletions, duplications, and inversions, were shown to constitute the major differences when the same genomes (i.e., the A, B, or D genomes) were compared between species of different ploidy levels. The comparative analysis allowed us to determine the extent and sequences of the rearranged regions as well as rearrangement breakpoints and sequence motifs at their boundaries, which suggest rearrangement by illegitimate recombination. Among these genomic rearrangements, the previously reported Pina and Pinb genes loss from the Ha locus of polyploid wheat species was caused by a large genomic deletion that probably occurred independently in the A and B genomes. Moreover, the Ha locus in the D genome of hexaploid wheat (T. aestivum) is 29 kb smaller than in the D genome of its diploid progenitor Ae. tauschii, principally because of transposable element insertions and two large deletions caused by illegitimate recombination. Our data suggest that illegitimate DNA recombination, leading to various genomic rearrangements, constitutes one of the major evolutionary mechanisms in wheat species.


Assuntos
Diploide , Evolução Molecular , Regulação da Expressão Gênica de Plantas/genética , Poliploidia , Recombinação Genética/genética , Triticum/genética , Triticum/metabolismo , Mapeamento Cromossômico , Elementos de DNA Transponíveis/genética , Deleção de Genes , Genoma de Planta , Dados de Sequência Molecular , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética
5.
Eur J Cell Biol ; 83(5): 205-12, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15346810

RESUMO

To study molecules secreted from cultured plant cells that promote development, maize microspores were transferred into culture and the conditioned media were collected over time and analysed. Electrophoresis indicated that both non-glycosylated and glycosylated proteins including arabinogalactan proteins (AGPs) appeared in the medium and their concentration increased during the time of culture. The development of embryos was correlated with the presence of specific extracellular proteins, using an experimental system based on a tunicamycin inhibition test. In addition, a precise protein analysis was conducted using MALDI-TOF and ESI-MS-MS techniques. These approaches have allowed the identification of 5 other types of proteins: a cell wall invertase, two thaumatin isoforms, one 1-3 beta-glucanase and two chitinase isoforms. Altogether these experiments and results open ways for research aimed at understanding which molecules stimulate embryo formation. Moreover, AGPs may be used to stimulate the development of microspores (pollen embryogenesis) prepared from non-responsive genotypes.


Assuntos
Mucoproteínas/metabolismo , Floroglucinol/análogos & derivados , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Zea mays/metabolismo , Meios de Cultivo Condicionados , Glucosídeos , Mucoproteínas/análise , Mucoproteínas/imunologia , Proteínas de Plantas/química , Sementes/embriologia , Sementes/crescimento & desenvolvimento , Coloração e Rotulagem , Técnicas de Cultura de Tecidos , Zea mays/embriologia
6.
Plant Cell Rep ; 22(12): 931-8, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15127223

RESUMO

Matrix attachment regions (MARs) have been used to enhance transgene expression and to reduce transgene expression instability in various organisms. In plants, contradictory data question the role of MAR sequences. To assess the use of MAR sequences in maize, we have used two well-characterized MARs from the maize adh-1 region. The MARs have been cloned either 5' to or at both sides of a reporter gene expression cassette to reconstitute a MAR-based domain. Histochemical staining revealed a new transgene expression pattern in roots of regenerated plants and their progeny. Furthermore, MARs systematically induced variegation. We show here that maize adh-1 MARs are able to modify transgene expression patterns as a heritable trait, giving a new and complementary outcome following use of MARs in genetic transformation.


Assuntos
Aldeído Desidrogenase/genética , Isoenzimas/genética , Regiões de Interação com a Matriz/genética , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas/genética , Ubiquitina/genética , Zea mays/genética , Família Aldeído Desidrogenase 1 , Sequência de Bases , Sítios de Ligação , Clonagem Molecular , Primers do DNA , Escherichia coli/enzimologia , Escherichia coli/genética , Genes Reporter , Glucuronidase/genética , Plantas Geneticamente Modificadas/enzimologia , Reação em Cadeia da Polimerase , Retinal Desidrogenase , Zea mays/crescimento & desenvolvimento
7.
Plant Physiol ; 130(4): 1675-85, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12481050

RESUMO

Transgenic maize (Zea mays) plants were generated with a construct harboring a maize caffeic acid O-methyltransferase (COMT) cDNA in the antisense (AS) orientation under the control of the maize Adh1 (alcohol dehydrogenase) promoter. Adh1-driven beta-glucuronidase expression was localized in vascular tissues and lignifying sclerenchyma, indicating its suitability in transgenic experiments aimed at modifying lignin content and composition. One line of AS plants, COMT-AS, displayed a significant reduction in COMT activity (15%-30% residual activity) and barely detectable amounts of COMT protein as determined by western-blot analysis. In this line, transgenes were shown to be stably integrated in the genome and transmitted to the progeny. Biochemical analysis of COMT-AS showed: (a) a strong decrease in Klason lignin content at the flowering stage, (b) a decrease in syringyl units, (c) a lower p-coumaric acid content, and (d) the occurrence of unusual 5-OH guaiacyl units. These results are reminiscent of some characteristics already observed for the maize bm3 (brown-midrib3) mutant, as well as for COMT down-regulated dicots. However, as compared with bm3, COMT down-regulation in the COMT-AS line is less severe in that it is restricted to sclerenchyma cells. To our knowledge, this is the first time that an AS strategy has been applied to modify lignin biosynthesis in a grass species.


Assuntos
Metiltransferases/metabolismo , Plantas Geneticamente Modificadas/genética , Zea mays/genética , Ácidos Cumáricos/metabolismo , Regulação para Baixo , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Histocitoquímica , Lignina/metabolismo , Metiltransferases/genética , Microscopia de Fluorescência , Fenótipo , Caules de Planta/química , Caules de Planta/genética , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas/genética , Propionatos , Especificidade por Substrato , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...