Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Res Food Sci ; 6: 100386, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846470

RESUMO

The biodiversity of Ecuadorian stingless bees is almost 200 species. Traditional pot-honey harvest in Ecuador is mostly done from nests of the three genera selected here Geotrigona Moure, 1943, Melipona Illiger, 1806, and Scaptotrigona Moure, 1942. The 20 pot-honey samples collected from cerumen pots and three ethnic honeys "abeja de tierra", "bermejo", and "cushillomishki" were analyzed for qualitative and quantitative targeted 1H-NMR honey profiling, and for the Honey Authenticity Test by Interphase Emulsion (HATIE). Extensive data of targeted organic compounds (41 parameters) were identified, quantified, and described. The three honey types were compared by ANOVA. Amino acids, ethanol, hydroxymethylfurfural, aliphatic organic acids, sugars, and markers of botanical origin. The number of phases observed with the HATIE were one in Scaptotrigona and three in Geotrigona and Melipona honeys. Acetic acid (19.60 ± 1.45 g/kg) and lactic acid (24.30 ± 1.65 g/kg) were particularly high in Geotrigona honey (in contrast to 1.3 g/kg acetic acid and 1.6 g/kg lactic acid in Melipona and Scaptotrigona), and with the lowest fructose + glucose (18.39 ± 1.68) g/100g honey compared to Melipona (52.87 ± 1.75) and Scaptotrigona (52.17 ± 0.60). Three local honeys were tested using PCA (Principal Component Analysis), two were assigned with a correct declared bee origin, but "bermejo" was not a Melipona and grouped with the Scaptotrigona cluster. However after HCA (Hierarchical Cluster Analysis) the three honeys were positioned in the Melipona-Scaptotrigona cluster. This research supports targeted 1H-NMR-based profiling of pot-honey metabolomics approach for multi-parameter visualization of organic compounds, as well as descriptive and pertained multivariate statistics (HCA and PCA) to discriminate the stingless bee genus in a set of Geotrigona, Melipona and Scaptotrigona honey types. The NMR characterization of Ecuadorian honey produced by stingless bees emphasizes the need for regulatory norms. A final note on stingless bee markers in pot-honey metabolites which should be screened for those that may extract phylogenetic signals from nutritional traits of honey. Scaptotrigona vitorum honey revealed biosurfactant activity in the HATIE, originating a fingerprint Honey Biosurfactant Test (HBT) for the genus in this set of pot-honeys.

2.
Heliyon ; 7(4): e06651, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33912698

RESUMO

Iran is one of the largest honey-producing countries worldwide and is considered as an important source of honey for international markets. However, since Iran is not registered for honey export to Europe, the quality of Iranian honey remains unknown to European traders. As the first step in filling this gap, we analyzed 225 honey samples using palynology, sensory, nuclear magnetic resonance (NMR) and conventional physicochemical analyses as outlined by the European Union coordinated control plan. The results show that while various types of genuine unifloral honey can be harvested in Iran, 85% of collected samples were adulterated. Performing principal component analysis on physicochemical parameters reveals that feeding tablet sugar and syrup of C4 origin to bees during the foraging season is a common mode of fraud. Replacement of natural nectar with sugar syrup together with presence of intensive aftertaste from Taraxacum and Eryngium affect the taste of unifloral honeys produced in Iran.

3.
Heliyon ; 6(11): e05596, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33294716

RESUMO

Unfavourable climatic conditions force Iranian beekeepers to translocate over large distances in the course of the year. However, irrespective of the main place of production, the honey is always labeled with the name of the beekeepers' hometown, which leads consequently to mislabeled products. The present study investigates the capability of DNA metabarcoding to locate the geographical origin of honey. The molecular markers (ITS2 and rbcL) allowed identification of 926 plant species in studied samples. A comprehensive review of floristic reference books specified 34 key species that could be used to successfully determine the geographical origin in 91.4% of samples. These key species were usually present in honey with tiny amounts and thus, conventional palynology might not be able to detect them. The present investigation indicates that although ITS2 is able to detect more species than rbcL, utilizing a combination of both markers provides more robust evidence of geographical origin.

4.
Artigo em Inglês | MEDLINE | ID: mdl-28956733

RESUMO

Various studies have shown that bee-collected pollen sold as nutritional supplements may contain toxic pyrrolizidine alkaloids (PAs) and, thus, pose a potential health risk for consumers. The level of contamination may vary according to its geographical and botanical origin. Here, the PA content of pollen produced in Switzerland was studied and 32 commercially available bee-collected pollen supplements produced between 2010 and 2014 were analysed. In addition, at what time period bees collect PA-containing pollen was investigated. Hence, this study looked into the occurrence of PAs in pollen samples collected daily during two-to-three consecutive seasons. Furthermore, the PA spectrum in pollen was compared to the spectrum found in flower heads of PA-plants to unambiguously identify plants responsible for PA contamination of pollen. The PA concentration of commercial and daily collected pollen was determined by target analysis using an HPLC-MS/MS system, allowing the detection of 18 different PAs and PA N-oxides found in the genera Echium, Eupatorium and Senecio, while the comparison of the PA spectrum in pollen and flower heads was performed by LC-HR-MS, allowing the detection of all PA types in a sample, including saturated, non-carcinogenic PAs. Of the commercially available pollen, 31% contained PAs with a mean concentration of 319 ng/g, mainly Echium- and Eupatorium-type PAs, while the PA concentrations were below the limit of quantitation (LOQ) in 69% of the pollen samples. Bees collected pollen containing Echium-type PAs mainly in June and July, while they gathered pollen containing Eupatorium-type PAs from mid-July to August. Senecio-type PAs appeared from June to September. Comparison of the PA array in pollen and plants identified E. vulgare and E. cannabinum as the main plants responsible for PA contamination of Swiss bee-collected pollen, and to a lesser extent also identified plants belonging to the genus Senecio.


Assuntos
Abelhas/fisiologia , Echium/química , Eupatorium/química , Contaminação de Alimentos/análise , Pólen/química , Alcaloides de Pirrolizidina/análise , Senécio/química , Animais , Especificidade da Espécie
5.
J Agric Food Chem ; 64(25): 5267-73, 2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27244472

RESUMO

Pyrrolizidine alkaloids (PAs) in honey can be a potential human health risk. So far, it has remained unclear whether PAs in honey originate from pollen or floral nectar. We obtained honey, nectar, and plant pollen from two observation sites where Echium vulgare L. was naturally abundant. The PA concentration of honey was determined by targeted analysis using a high pressure liquid chromatography-mass spectrometry system (HPLC-MS/MS), allowing the quantification of six different PAs and PA-N-oxides present in E. vulgare. Echium-type PAs were detected up to 0.153 µg/g in honey. Nectar and plant pollen were analyzed by nontargeted analysis using ultrahigh pressure liquid chromatography-high resolution-mass spectrometry (UHPLC-HR-MS), allowing the detection of 10 alkaloids in small size samples. Echium-type PAs were detected between 0.3-95.1 µg/g in nectar and 500-35000 µg/g in plant pollen. The PA composition in nectar and plant pollen was compared to the composition in honey. Echimidine (+N-oxide) was the main alkaloid detected in honey and nectar samples, while echivulgarine (+N-oxide) was the main PA found in plant pollen. These results suggest that nectar contributes more significantly to PA contamination in honey than plant pollen.


Assuntos
Echium/química , Flores/química , Mel/análise , Néctar de Plantas/química , Alcaloides de Pirrolizidina/análise , Cromatografia Líquida de Alta Pressão , Pólen/química , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...