Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Robot ; 6(58): eabf3368, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34516746

RESUMO

Bionic prostheses have restorative potential. However, the complex interplay between intuitive motor control, proprioception, and touch that represents the hallmark of human upper limb function has not been revealed. Here, we show that the neurorobotic fusion of touch, grip kinesthesia, and intuitive motor control promotes levels of behavioral performance that are stratified toward able-bodied function and away from standard-of-care prosthetic users. This was achieved through targeted motor and sensory reinnervation, a closed-loop neural-machine interface, coupled to a noninvasive robotic architecture. Adding touch to motor control improves the ability to reach intended target grasp forces, find target durometers among distractors, and promote prosthetic ownership. Touch, kinesthesia, and motor control restore balanced decision strategies when identifying target durometers and intrinsic visuomotor behaviors that reduce the need to watch the prosthetic hand during object interactions, which frees the eyes to look ahead to the next planned action. The combination of these three modalities also enhances error correction performance. We applied our unified theoretical, functional, and clinical analyses, enabling us to define the relative contributions of the sensory and motor modalities operating simultaneously in this neural-machine interface. This multiperspective framework provides the necessary evidence to show that bionic prostheses attain more human-like function with effective sensory-motor restoration.


Assuntos
Braço/fisiologia , Biônica , Encéfalo/fisiologia , Força da Mão , Mãos/fisiologia , Tato , Extremidade Superior/fisiologia , Adulto , Membros Artificiais , Simulação por Computador , Feminino , Humanos , Cinestesia , Masculino , Destreza Motora , Movimento , Músculo Esquelético/inervação , Redes Neurais de Computação , Desenho de Prótese , Robótica , Ombro/fisiologia , Percepção do Tato
2.
Front Neurosci ; 14: 120, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32140096

RESUMO

Cutaneous sensation is vital to controlling our hands and upper limbs. It helps close the motor control loop by informing adjustments of grasping forces during object manipulations and provides much of the information the brain requires to perceive our limbs as a part of our bodies. This sensory information is absent to upper-limb prosthesis users. Although robotic prostheses are becoming increasingly sophisticated, the absence of feedback imposes a reliance on open-loop control and limits the functional potential as an integrated part of the body. Experimental systems to restore physiologically relevant sensory information to prosthesis users are beginning to emerge. However, the impact of their long-term use on functional abilities, body image, and neural adaptation processes remains unclear. Understanding these effects is essential to transition sensate prostheses from sophisticated assistive tools to integrated replacement limbs. We recruited three participants with high-level upper-limb amputation who previously received targeted reinnervation surgery. Each participant was fit with a neural-machine-interface prosthesis that allowed participants to operate their device by thinking about moving their missing limb. Additionally, we fit a sensory feedback system that allowed participants to experience touch to the prosthesis as touch on their missing limb. All three participants performed a long-term take-home trial. Two participants used their neural-machine-interface systems with touch feedback and one control participant used his prescribed, insensate prosthesis. A series of functional outcome metrics and psychophysical evaluations were performed using sensate neural-machine-interface prostheses before and after the take-home period to capture changes in functional abilities, limb embodiment, and neural adaptation. Our results demonstrated that the relationship between users and sensate neural-machine-interface prostheses is dynamic and changes with long-term use. The presence of touch sensation had a near-immediate impact on how the users operated their prostheses. In the multiple independent measures of users' functional abilities employed, we observed a spectrum of performance changes following long-term use. Furthermore, after the take-home period, participants more appropriately integrated their prostheses into their body images and psychophysical tests provided strong evidence that neural and cortical adaptation occurred.

3.
Sci Rep ; 9(1): 5806, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30967581

RESUMO

Object stiffness discrimination is fundamental to shaping the way we interact with our environment. Investigating the sensorimotor mechanisms underpinning stiffness discrimination may help further our understanding of healthy and sensory-impaired upper limb function. We developed a metric that leverages sensory discrimination techniques and a foraging-based analysis to characterize participant accuracy and discrimination processes of sensorimotor control. Our metric required searching and discriminating two variants of test-object: rubber blocks and spring cells, which emphasized cutaneous-force and proprioceptive feedback, respectively. We measured the number of test-objects handled, selection accuracy, and foraging duration. These values were used to derive six indicators of performance. We observed higher discrimination accuracies, with quicker search and handling durations, for blocks compared to spring cells. Correlative analyses of accuracy, error rates, and foraging times suggested that the block and spring variants were, in fact, unique sensory tasks. These results provide evidence that our metric is sensitive to the contributions of sensory feedback, motor control, and task performance strategy, and will likely be effective in further characterizing the impact of sensory feedback on motor control in healthy and sensory-impaired populations.


Assuntos
Retroalimentação Sensorial/fisiologia , Mãos/fisiologia , Propriocepção/fisiologia , Tato/fisiologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Desempenho Psicomotor/fisiologia , Análise e Desempenho de Tarefas , Adulto Jovem
4.
J Vis Exp ; (143)2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30663709

RESUMO

This work describes a methodological framework that can be used to explicitly and implicitly characterize the sense of agency developed over the neural-machine interface (NMI) control of sensate virtual or robotic prosthetic hands. The formation of agency is fundamental in distinguishing the actions that we perform with our limbs as being our own. By striving to incorporate advanced upper-limb prostheses into these same perceptual mechanisms, we can begin to integrate an artificial limb more closely into the user's existing cognitive framework for limb control. This has important implications in promoting user acceptance, use, and effective control of advanced upper-limb prostheses. In this protocol, participants control a virtual prosthetic hand and receive kinesthetic sensory feedback through their preexisting NMIs. A series of virtual grasping tasks are performed and perturbations are systematically introduced to the kinesthetic feedback and virtual hand movements. Two separate measures of agency are employed: established psychophysical questionnaires (to capture the explicit experience of agency) and a time interval estimate task to capture the implicit sense of agency (intentional binding). Results of this protocol (questionnaire scores and time interval estimates) can be analyzed to quantify the extent of agency formation.


Assuntos
Membros Artificiais/normas , Retroalimentação Sensorial/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Feminino , Humanos , Masculino
5.
BMC Med Res Methodol ; 18(1): 141, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30453897

RESUMO

BACKGROUND: Indices of inter-evaluator reliability are used in many fields such as computational linguistics, psychology, and medical science; however, the interpretation of resulting values and determination of appropriate thresholds lack context and are often guided only by arbitrary "rules of thumb" or simply not addressed at all. Our goal for this work was to develop a method for determining the relationship between inter-evaluator agreement and error to facilitate meaningful interpretation of values, thresholds, and reliability. METHODS: Three expert human evaluators completed a video analysis task, and averaged their results together to create a reference dataset of 300 time measurements. We simulated unique combinations of systematic error and random error onto the reference dataset to generate 4900 new hypothetical evaluators (each with 300 time measurements). The systematic errors and random errors made by the hypothetical evaluator population were approximated as the mean and variance of a normally-distributed error signal. Calculating the error (using percent error) and inter-evaluator agreement (using Krippendorff's alpha) between each hypothetical evaluator and the reference dataset allowed us to establish a mathematical model and value envelope of the worst possible percent error for any given amount of agreement. RESULTS: We used the relationship between inter-evaluator agreement and error to make an informed judgment of an acceptable threshold for Krippendorff's alpha within the context of our specific test. To demonstrate the utility of our modeling approach, we calculated the percent error and Krippendorff's alpha between the reference dataset and a new cohort of trained human evaluators and used our contextually-derived Krippendorff's alpha threshold as a gauge of evaluator quality. Although all evaluators had relatively high agreement (> 0.9) compared to the rule of thumb (0.8), our agreement threshold permitted evaluators with low error, while rejecting one evaluator with relatively high error. CONCLUSIONS: We found that our approach established threshold values of reliability, within the context of our evaluation criteria, that were far less permissive than the typically accepted "rule of thumb" cutoff for Krippendorff's alpha. This procedure provides a less arbitrary method for determining a reliability threshold and can be tailored to work within the context of any reliability index.


Assuntos
Algoritmos , Simulação por Computador , Modelos Teóricos , Variações Dependentes do Observador , Humanos , Reconhecimento Automatizado de Padrão/métodos , Reprodutibilidade dos Testes
6.
Front Psychol ; 9: 560, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29773999

RESUMO

Fitts' law models the relationship between amplitude, precision, and speed of rapid movements. It is widely used to quantify performance in pointing tasks, study human-computer interaction, and generally to understand perceptual-motor information processes, including research to model performance in isometric force production tasks. Applying Fitts' law to an isometric grip force task would allow for quantifying grasp performance in rehabilitative medicine and may aid research on prosthetic control and design. We examined whether Fitts' law would hold when participants attempted to accurately produce their intended force output while grasping a manipulandum when presented with images of various everyday objects (we termed this the implicit task). Although our main interest was the implicit task, to benchmark it and establish validity, we examined performance against a more standard visual feedback condition via a digital force-feedback meter on a video monitor (explicit task). Next, we progressed from visual force feedback with force meter targets to the same targets without visual force feedback (operating largely on feedforward control with tactile feedback). This provided an opportunity to see if Fitts' law would hold without vision, and allowed us to progress toward the more naturalistic implicit task (which does not include visual feedback). Finally, we changed the nature of the targets from requiring explicit force values presented as arrows on a force-feedback meter (explicit targets) to the more naturalistic and intuitive target forces implied by images of objects (implicit targets). With visual force feedback the relation between task difficulty and the time to produce the target grip force was predicted by Fitts' law (average r2 = 0.82). Without vision, average grip force scaled accurately although force variability was insensitive to the target presented. In contrast, images of everyday objects generated more reliable grip forces without the visualized force meter. In sum, population means were well-described by Fitts' law for explicit targets with vision (r2 = 0.96) and implicit targets (r2 = 0.89), but not as well-described for explicit targets without vision (r2 = 0.54). Implicit targets should provide a realistic see-object-squeeze-object test using Fitts' law to quantify the relative speed-accuracy relationship of any given grasper.

7.
Sci Transl Med ; 10(432)2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29540617

RESUMO

To effortlessly complete an intentional movement, the brain needs feedback from the body regarding the movement's progress. This largely nonconscious kinesthetic sense helps the brain to learn relationships between motor commands and outcomes to correct movement errors. Prosthetic systems for restoring function have predominantly focused on controlling motorized joint movement. Without the kinesthetic sense, however, these devices do not become intuitively controllable. We report a method for endowing human amputees with a kinesthetic perception of dexterous robotic hands. Vibrating the muscles used for prosthetic control via a neural-machine interface produced the illusory perception of complex grip movements. Within minutes, three amputees integrated this kinesthetic feedback and improved movement control. Combining intent, kinesthesia, and vision instilled participants with a sense of agency over the robotic movements. This feedback approach for closed-loop control opens a pathway to seamless integration of minds and machines.


Assuntos
Próteses e Implantes , Amputados , Mãos/fisiologia , Humanos , Cinestesia , Percepção de Movimento/fisiologia , Movimento/fisiologia , Percepção/fisiologia , Robótica
8.
J Neurosurg ; 127(4): 829-836, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27739941

RESUMO

OBJECTIVE The far lateral transcondylar approach to the ventral foramen magnum requires partial resection of the occipital condyle. Early biomechanical studies suggest that occipitocervical (OC) fusion should be considered if 50% of the condyle is resected. In clinical practice, however, a joint-sparing condylectomy has often been employed without the need for OC fusion. The biomechanics of the joint-sparing technique have not been reported. Authors of the present study hypothesized that the clinically relevant joint-sparing condylectomy would result in added stability of the craniovertebral junction as compared with earlier reports. METHODS Multidirectional in vitro flexibility tests were performed using a robotic spine-testing system on 7 fresh cadaveric spines to assess the effect of sequential unilateral joint-sparing condylectomy (25%, 50%, 75%, 100%) in comparison with the intact state by using cardinal direction and coupled moments combined with a simulated head weight "follower load." RESULTS The percent change in range of motion following sequential condylectomy as compared with the intact state was 5.2%, 8.1%, 12.0%, and 27.5% in flexion-extension (FE); 8.4%, 14.7%, 39.1%, and 80.2% in lateral bending (LB); and 24.4%, 31.5%, 49.9%, and 141.1% in axial rotation (AR). Only values at 100% condylectomy were statistically significant (p < 0.05). With coupled motions, however, -3.9%, 6.6%, 35.8%, and 142.4% increases in AR+F and 27.3%, 32.7%, 77.5%, and 175.5% increases in AR+E were found. Values for 75% and 100% condyle resection were statistically significant in AR+E. CONCLUSIONS When tested in the traditional cardinal directions, a 50% joint-sparing condylectomy did not significantly increase motion. However, removing 75% of the condyle may necessitate fusion, as a statistically significant increase in motion was found when E was coupled with AR. Clinical correlation is ultimately needed to determine the need for OC fusion.


Assuntos
Articulação Atlantoccipital/fisiologia , Osso Occipital/cirurgia , Osteotomia/métodos , Amplitude de Movimento Articular , Fenômenos Biomecânicos , Cadáver , Humanos , Tratamentos com Preservação do Órgão , Período Pós-Operatório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...