Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 142(22): 1918-1927, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-37774369

RESUMO

Vaso-occlusive pain episodes (VOE) cause severe pain in patients with sickle cell disease (SCD). Vaso-occlusive events promote ischemia/reperfusion pathobiology that activates complement. We hypothesized that complement activation is linked to VOE. We used cold to induce VOE in the Townes sickle homozygous for hemoglobin S (HbSS) mouse model and complement inhibitors to determine whether anaphylatoxin C5a mediates VOE. We used a dorsal skinfold chamber to measure microvascular stasis (vaso-occlusion) and von Frey filaments applied to the plantar surface of the hind paw to assess mechanical hyperalgesia in HbSS and control Townes mice homozygous for hemoglobin A (HbAA) mice after cold exposure at 10°C/50°F for 1 hour. Cold exposure induced more vaso-occlusion in nonhyperalgesic HbSS mice (33%) than in HbAA mice (11%) or HbSS mice left at room temperature (1%). Cold exposure also produced mechanical hyperalgesia as measured by paw withdrawal threshold in HbSS mice compared with that in HbAA mice or HbSS mice left at room temperature. Vaso-occlusion and hyperalgesia were associated with an increase in complement activation fragments Bb and C5a in plasma of HbSS mice after cold exposure. This was accompanied by an increase in proinflammatory NF-κB activation and VCAM-1 and ICAM-1 expression in the liver. Pretreatment of nonhyperalgesic HbSS mice before cold exposure with anti-C5 or anti-C5aR monoclonal antibodies (mAbs) decreased vaso-occlusion, mechanical hyperalgesia, complement activation, and liver inflammatory markers compared with pretreatment with control mAb. Anti-C5 or -C5aR mAb infusion also abrogated mechanical hyperalgesia in HbSS mice with ongoing hyperalgesia at baseline. These findings suggest that C5a promotes vaso-occlusion, pain, and inflammation during VOE and may play a role in chronic pain.


Assuntos
Anemia Falciforme , Traço Falciforme , Camundongos , Humanos , Animais , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Camundongos Transgênicos , Dor , Anemia Falciforme/complicações , Anemia Falciforme/genética , Anemia Falciforme/metabolismo , Traço Falciforme/complicações , Ativação do Complemento
2.
Curr Opin Hematol ; 30(5): 153-158, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37462409

RESUMO

PURPOSE OF REVIEW: This review provides an update on recent advances in mechanistic studies of thromboinflammatory mechanisms that contribute to the disease pathology in sickle cell disease (SCD). There is a focus on novel pathways, clinical relevance, and translational potential of these findings. We hope to encourage more advances in this area to reduce organ damage in young patients prior to gene therapy, and to serve the aging SCD patient population. RECENT FINDINGS: Novel insights into the roles of neutrophils, the ADAMTS-13/VWF axis, oxidative stress, and the intrinsic coagulation cascade, as well as relevant clinical trials, are discussed. SUMMARY: Several studies implicate dysregulation of the ADAMTS-13/VWF axis as playing a major role in vaso-occlusive events (VOE) in SCD. Another highlight is reducing iron overload, which has beneficial effects on erythrocyte and neutrophil function that reduce VOE and inflammation. Multiple studies suggest that targeting HO-1/ROS in erythrocytes, platelets, and endothelium can attenuate disease pathology. New insights into coagulation activation identify intrinsic coagulation factor XII as a central regulator of many thromboinflammatory pathologies in SCD. The complement cascade and modulators of neutrophil function and release of neutrophil extracellular traps are also discussed.


Assuntos
Anemia Falciforme , Ferro , Humanos , Proteína ADAMTS13 , Fator de von Willebrand , Anemia Falciforme/tratamento farmacológico , Inflamação
3.
J Thromb Haemost ; 21(5): 1366-1380, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36738826

RESUMO

BACKGROUND: Vascular activation is characterized by increased proinflammatory, pro thrombotic, and proadhesive signaling. Several chronic and acute conditions, including Bcr-abl-negative myeloproliferative neoplasms (MPNs), graft-vs-host disease, and COVID-19 have been noted to have increased activation of the janus kinase (JAK)-signal transducer and downstream activator of transcription (STAT) pathways. Two notable inhibitors of the JAK-STAT pathway are ruxolitinib (JAK1/2 inhibitor) and fedratinib (JAK2 inhibitor), which are currently used to treat MPN patients. However, in some conditions, it has been noted that JAK inhibitors can increase the risk of thromboembolic complications. OBJECTIVES: We sought to define the anti-inflammatory and antithrombotic effects of JAK-STAT inhibitors in vascular endothelial cells. METHODS: We assessed endothelial activation in the presence or absence of ruxolitinib or fedratinib by using immunoblots, immunofluorescence, qRT-PCR, and function coagulation assays. Finally, we used endothelialized microfluidics perfused with blood from normal and JAK2V617F+ individuals to evaluate whether ruxolitinib and fedratinib changed cell adhesion. RESULTS: We found that both ruxolitinib and fedratinib reduced endothelial cell phospho-STAT1 and STAT3 signaling and attenuated nuclear phospho-NK-κB and phospho-c-Jun localization. JAK-STAT inhibition also limited secretion of proadhesive and procoagulant P-selectin and von Willebrand factor and proinflammatory IL-6. Likewise, we found that JAK-STAT inhibition reduced endothelial tissue factor and urokinase plasminogen activator expression and activity. CONCLUSIONS: By using endothelialized microfluidics perfused with whole blood samples, we demonstrated that endothelial treatment with JAK-STAT inhibitors prevented rolling of both healthy control and JAK2V617F MPN leukocytes. Together, these findings demonstrate that JAK-STAT inhibitors reduce the upregulation of critical prothrombotic pathways and prevent increased leukocyte-endothelial adhesion.


Assuntos
COVID-19 , Janus Quinases , Humanos , Janus Quinases/metabolismo , Janus Quinases/farmacologia , Transdução de Sinais , Células Endoteliais/metabolismo , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/farmacologia , Janus Quinase 2 , Leucócitos/metabolismo
4.
Thromb Res ; 218: 8-16, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35963121

RESUMO

Splanchnic vein thrombosis (SVT) in the setting of myeloproliferative neoplasm (MPN) is a unique clinical entity that requires close interdisciplinary coordination for proper diagnosis and management. The pathobiology of MPN-SVT is not fully understood, but recent developments have revealed the central role of endothelial cells. In this multidisciplinary review, we summarize the epidemiology of MPN-SVT and then critically evaluate the pathogenic features of this complication, with a focus on endothelial cell biology. We then discuss diagnostic considerations, including imaging modalities and MPN-specific investigations. Finally, we critically review the evidence supporting clinical management of MPN-SVT, including anticoagulation, interventional radiology procedures, MPN-related therapies, and liver transplantation. We conclude that further studies are needed to improve our understanding of MPN-SVT and the outcomes of patients with this debilitating complication.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Trombose Venosa , Anticoagulantes/uso terapêutico , Células Endoteliais/patologia , Humanos , Transtornos Mieloproliferativos/complicações , Neoplasias/complicações , Circulação Esplâncnica , Trombose Venosa/patologia
5.
J Vet Intern Med ; 36(4): 1237-1247, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35815881

RESUMO

BACKGROUND: Myelofibrosis often lacks an identifiable cause in dogs. In humans, most primary myelofibrosis cases develop secondary to driver mutations in JAK2, CALR, or MPL. OBJECTIVES: To determine the prevalence of variants in JAK2, CALR, or MPL candidate regions in dogs with myelofibrosis and in healthy dogs. ANIMALS: Twenty-six dogs with myelofibrosis that underwent bone marrow biopsy between 2010 and 2018 and 25 control dogs matched for age, sex, and breed. METHODS: Cross-sectional study. Amplicon sequencing of JAK2 exons 12 and 14, CALR exon 9, and MPL exon 10 was performed on formalin-fixed, decalcified, paraffin-embedded bone marrow (myelofibrosis) or peripheral blood (control) DNA. Somatic variants were categorized as likely-benign or possibly-pathogenic based on predicted impact on protein function. Within the myelofibrosis group, hematologic variables and survival were compared by variant status (none, likely-benign only, and ≥1 possibly-pathogenic). The effect of age on variant count was analyzed using linear regression. RESULTS: Eighteen of 26 (69%) myelofibrosis cases had somatic variants, including 9 classified as possibly-pathogenic. No somatic variants were detected in controls. Within the myelofibrosis group, hematologic variables and survival did not differ by variant status. The number of somatic variants per myelofibrosis case increased with age (estimate, 0.69; SE, 0.29; P = .03). CONCLUSIONS AND CLINICAL IMPORTANCE: Somatic variants might initiate or perpetuate myelofibrosis in dogs. Our findings suggest the occurrence of clonal hematopoiesis in dogs, with increasing incidence with age, as observed in humans.


Assuntos
Doenças do Cão , Mielofibrose Primária , Animais , Calreticulina/genética , Calreticulina/metabolismo , Estudos Transversais , Doenças do Cão/genética , Cães , Humanos , Mutação , Mielofibrose Primária/genética , Mielofibrose Primária/veterinária , Receptores de Trombopoetina/genética , Receptores de Trombopoetina/metabolismo
6.
Transl Res ; 246: 1-14, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35354090

RESUMO

Sickle cell disease (SCD) is caused by a single point mutation in the ß-globin gene of hemoglobin, which produces an altered sickle hemoglobin (HbS). The ability of HbS to polymerize under deoxygenated conditions gives rise to chronic hemolysis, oxidative stress, inflammation, and vaso-occlusion. Herein, we review recent findings using microfluidic technologies that have elucidated mechanisms of oxygen-dependent and -independent induction of HbS polymerization and how these mechanisms elicit the biophysical and inflammatory consequences in SCD pathophysiology. We also discuss how validation and use of microfluidics in SCD provides the opportunity to advance development of numerous therapeutic strategies, including curative gene therapies.


Assuntos
Anemia Falciforme , Microfluídica , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/terapia , Hemoglobina Falciforme , Hemólise , Humanos , Pesquisa Translacional Biomédica
7.
Front Immunol ; 12: 632709, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841413

RESUMO

Recent evidence indicates that hemolysis in sickle cell disease (SCD) promotes inflammation via innate immune signaling through toll-like receptor 4 (TLR4). Free heme released by hemolyzed red blood cells can bind to myeloid differentiation factor-2 (MD-2) and activate TLR4 pro-inflammatory signaling on endothelium to promote vaso-occlusion and acute chest syndrome in murine models of SCD. MD-2 is co-expressed with TLR4 on cell membranes, but in inflammatory conditions, soluble MD-2 (sMD-2) is elevated in plasma. sMD-2 levels were significantly increased in human and murine sickle (SS) plasma as compared to normal (AA) plasma. Human umbilical vein endothelial cells (HUVEC) and human lung microvascular endothelial cells incubated with human SS plasma had significant increases in pro-inflammatory IL-8, IL-6, and soluble VCAM-1 secretion compared to endothelial cells incubated with AA plasma. The increase in HUVEC IL-8 secretion was blocked by depletion of sMD-2 from SS plasma and enhanced by the addition of sMD-2 to AA plasma. The TLR4 signaling inhibitor, TAK-242, inhibited HUVEC IL-8 secretion in response to SS plasma by 85%. Heme-agarose pull-down assays and UV/Vis spectroscopy demonstrated that heme binds to sMD-2. Hemopexin, a high affinity heme-binding protein, inhibited HUVEC IL-8 secretion induced by SS plasma or SS and AA plasma supplemented with sMD-2. These data suggest that sMD-2 bound to heme might play an important role in pro-inflammatory signaling by endothelium in SCD.


Assuntos
Anemia Falciforme/metabolismo , Células Endoteliais/metabolismo , Heme/metabolismo , Antígeno 96 de Linfócito/metabolismo , Transdução de Sinais , Anemia Falciforme/sangue , Animais , Hemopexina/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação , Interleucina-8/metabolismo , Antígeno 96 de Linfócito/sangue , Camundongos , Receptor 4 Toll-Like/metabolismo
8.
Curr Hematol Malig Rep ; 16(3): 304-313, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33876389

RESUMO

PURPOSE OF REVIEW: Thrombosis remains a leading cause of morbidity and mortality in BCR/ABL negative myeloproliferative neoplasms (MPN). Circulating blood cells are both increased in quantity and qualitatively abnormal in MPN, resulting in an increased thrombotic risk. Herein, we review recently elucidated mechanisms of MPN thrombosis and discuss implications of drugs currently under investigation for MPN. RECENT FINDINGS: Recent studies highlight that in JAK2V617F granulocytes and platelets, thrombo-inflammatory genes are upregulated. Furthermore, in JAK2V617F granulocytes, protein expression of integrin CD11b, tissue factor, and leukocyte alkaline phosphatase are all increased. Overall, myeloid cells, namely neutrophils, may contribute in several ways, such as through increased adhesion via ß1 integrin binding to VCAM1, increased infiltration, and enhanced inducibility to extrude neutrophil extracellular traps. Non-myeloid inflammatory cells may also contribute via secretion of cytokines. With regard to red blood cells, number, rigidity, adhesion, and generation of microvesicles may lead to increased vascular resistance as well as increased cell-cell interactions that promote rolling and adhesion. Platelets may also contribute in a similar fashion. Lastly, the vasculature is also increasingly appreciated, as several studies have demonstrated increased endothelial expression of pro-coagulant and pro-adhesive proteins, such as von Willebrand factor or P-selectin in JAK2V617F endothelial cells. With the advent of molecular diagnostics, MPN therapeutics are advancing beyond cytoreduction. Our increased understanding of pro-inflammatory and thrombotic pathophysiology in MPN provides a rational basis for evaluation of in-development MPN therapeutics to reduce thrombosis.


Assuntos
Transtornos Mieloproliferativos/complicações , Trombose/etiologia , Biomarcadores , Comunicação Celular , Terapia Combinada/efeitos adversos , Terapia Combinada/métodos , Gerenciamento Clínico , Suscetibilidade a Doenças , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Mutação , Transtornos Mieloproliferativos/diagnóstico , Transtornos Mieloproliferativos/etiologia , Especificidade de Órgãos/genética , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Trombose/diagnóstico , Trombose/prevenção & controle , Trombose/terapia , Resultado do Tratamento
10.
Orphanet J Rare Dis ; 15(1): 185, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32660636

RESUMO

BACKGROUND: Hereditary Hemorrhagic Telangiectasia (HHT) is a rare inherited disorder characterized by development of mucocutaneous telangiectases and visceral organ arteriovenous malformations, which can lead to recurrent, spontaneous bleeding and development of iron deficiency anemia. The primary objective of this study was to ascertain the relationship between epistaxis severity scores (ESS), laboratory values, genotype, and phenotype in HHT. Our secondary objective was to assess efficacy of systemic antifibrinolytic therapy in reducing ESS in HHT. METHODOLOGY: We conducted a retrospective review of patients seen at the UNC HHT Center from January 1, 2009 to February 28, 2015. ESS, demographics, and results of genetic testing were abstracted from the medical record. Response to antifibrinolytic therapy was evaluated by comparing pre-post ESS. RESULTS: One hundred and forty nine patients were eligible with 116 having genetic testing and 33 without. Age, hemoglobin and ferritin levels were predictive of ESS. Of the 116 patients that underwent genetic testing: 63 had an ACVRL1 mutation, 40 had an ENG mutation, 2 had a SMAD4 mutation, and 11 patients had no pathologic HHT genetic variation detected. Compared to patients without a detectable HHT-associated genetic variation, patients with a HHT-associated genetic variation had higher ESS scores (p < 0.05). Neither ESS nor genotype was predictive of pulmonary or brain AVMs. Twenty-four HHT patients with ESS > 4 were started on antifibrinolytic therapy (tranexamic acid or aminocaproic acid) and had a post-treatment ESS recorded. All patients had a decrease in ESS of > 0.71 (minimal meaningful difference), but patients taking antifibrinolytics displayed larger decreases. No patients on antifibrinolytics experienced a VTE with median follow up of 13 months. CONCLUSIONS: We demonstrate that the ESS correlates with age, hemoglobin and ferritin. Additionally, we demonstrate that HHT patients with genetic mutations have higher ESS scores. Our data demonstrate that antifibrinolytics are effective in decreasing epistaxis severity and safe with long-term use in HHT patients.


Assuntos
Telangiectasia Hemorrágica Hereditária , Receptores de Activinas Tipo II , Epistaxe/etiologia , Epistaxe/genética , Genótipo , Humanos , Fenótipo , Estudos Retrospectivos , Telangiectasia Hemorrágica Hereditária/tratamento farmacológico , Telangiectasia Hemorrágica Hereditária/genética
11.
Res Pract Thromb Haemost ; 4(3): 422-428, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32211576

RESUMO

BACKGROUND: Patients with polycythemia vera with high hematocrit have increased risk of venous thromboembolism (VTE). OBJECTIVE: To determine whether high hematocrit in the general population is also associated with elevated VTE risk. METHODS: The prospective Atherosclerosis Risk in Communities Study performed a complete blood count in 13 891 adults aged 45 to 64 in 1987 to 1989. We identified incident hospitalized VTEs through 2015 and performed proportional hazards regression analyses using race-sex-specific categorization of hematocrit percentiles (ie, <5th, 5th to <25th, 25th to <75th, 75th to <95th, and 95th-100th percentiles, with the 25th to <75th percentile serving as the reference). RESULTS: Over a median follow-up of 26 years, 800 participants had an incident venous thrombosis of the leg and/or a pulmonary embolism. There was a nonlinear association of hematocrit with VTE incidence, with risk elevated 72% for participants above the 95th percentile of hematocrit compared with the reference. Specifically, hazard ratios (95% confidence intervals) of incident VTE were 1.27 (0.91-1.76), 1.06 (0.87-1.28), 1 (reference), 1.17 (0.98-1.40) and 1.72 (1.30-2.27) across the 5 hematocrit percentiles, adjusted for age, race, sex, body mass index, smoking status and pack-years, and other confounding variables. The association of high hematocrit with VTE was limited to provoked VTE, with little evidence for unprovoked VTE. Hemoglobin above the 95th percentile also was associated with an increased risk of VTE. In contrast, there were no significant associations of platelet, leukocyte, neutrophil, or lymphocyte counts with VTE incidence. CONCLUSION: High hematocrit and hemoglobin in a general middle-aged population sample were associated with increased long-term risk of VTE, particularly provoked VTE.

12.
Front Immunol ; 11: 613278, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33542720

RESUMO

Heme, released from red blood cells in sickle cell disease (SCD), interacts with toll-like receptor 4 (TLR4) to activate NF-κB leading to the production of cytokines and adhesion molecules which promote inflammation, pain, and vaso-occlusion. In SCD, TLR4 inhibition has been shown to modulate heme-induced microvascular stasis and lung injury. We sought to delineate the role of endothelial verses hematopoietic TLR4 in SCD by developing a TLR4 null transgenic sickle mouse. We bred a global Tlr4-/- deficiency state into Townes-AA mice expressing normal human adult hemoglobin A and Townes-SS mice expressing sickle hemoglobin S. SS-Tlr4-/- had similar complete blood counts and serum chemistries as SS-Tlr4+/+ mice. However, SS-Tlr4-/- mice developed significantly less microvascular stasis in dorsal skin fold chambers than SS-Tlr4+/+ mice in response to challenges with heme, lipopolysaccharide (LPS), and hypoxia/reoxygenation (H/R). To define a potential mechanism for decreased microvascular stasis in SS-Tlr4-/- mice, we measured pro-inflammatory NF-κB and adhesion molecules in livers post-heme challenge. Compared to heme-challenged SS-Tlr4+/+ livers, SS-Tlr4-/- livers had lower adhesion molecule and cytokine mRNAs, NF-κB phospho-p65, and adhesion molecule protein expression. Furthermore, lung P-selectin and von Willebrand factor immunostaining was reduced. Next, to establish if endothelial or hematopoietic cell TLR4 signaling is critical to vaso-occlusive physiology, we created chimeric mice by transplanting SS-Tlr4-/- or SS-Tlr4+/+ bone marrow into AA-Tlr4-/- or AA-Tlr4+/+ recipients. Hemin-stimulated microvascular stasis was significantly decreased when the recipient was AA-Tlr4-/- . These data demonstrate that endothelial, but not hematopoietic, TLR4 expression is necessary to initiate vaso-occlusive physiology in SS mice.


Assuntos
Anemia Falciforme/metabolismo , Endotélio/metabolismo , Hemoglobina A/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Eritrócitos/metabolismo , Feminino , Hematopoese/fisiologia , Heme/metabolismo , Hemoglobina Falciforme/metabolismo , Humanos , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microvasos , NF-kappa B/metabolismo , Transdução de Sinais/fisiologia , Fator de Transcrição RelA/metabolismo
14.
Blood ; 133(23): 2529-2541, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-30952675

RESUMO

Sickle cell disease (SCD) is associated with chronic activation of coagulation and an increased risk of venous thromboembolism. Erythrocyte sickling, the primary pathologic event in SCD, results in dramatic morphological changes in red blood cells (RBCs) because of polymerization of the abnormal hemoglobin. We used a mouse model of SCD and blood samples from sickle patients to determine if these changes affect the structure, properties, and dynamics of sickle clot formation. Sickling of RBCs and a significant increase in fibrin deposition were observed in venous thrombi formed in sickle mice. During ex vivo clot contraction, the number of RBCs extruded from sickle whole blood clots was significantly reduced compared with the number released from sickle cell trait and nonsickle clots in both mice and humans. Entrapment of sickled RBCs was largely factor XIIIa-independent and entirely mediated by the platelet-free cellular fraction of sickle blood. Inhibition of phosphatidylserine, but not administration of antisickling compounds, increased the number of RBCs released from sickle clots. Interestingly, whole blood, but not plasma clots from SCD patients, was more resistant to fibrinolysis, indicating that the cellular fraction of blood mediates resistance to tissue plasminogen activator. Sickle trait whole blood clots demonstrated an intermediate phenotype in response to tissue plasminogen activator. RBC exchange in SCD patients had a long-lasting effect on normalizing whole blood clot contraction. Furthermore, RBC exchange transiently reversed resistance of whole blood sickle clots to fibrinolysis, in part by decreasing platelet-derived PAI-1. These properties of sickle clots may explain the increased risk of venous thromboembolism observed in SCD.


Assuntos
Anemia Falciforme/complicações , Anemia Falciforme/patologia , Eritrócitos Anormais/patologia , Trombose/patologia , Trombose Venosa/patologia , Anemia Falciforme/sangue , Animais , Eritrócitos/patologia , Humanos , Camundongos , Trombose/sangue , Trombose Venosa/sangue , Trombose Venosa/etiologia
16.
Am J Ther ; 25(2): e270-e272, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29293474

RESUMO

The treatment of refractory immune-mediated thrombocytopenia purpura (ITP) can be challenging. This case report describes treatment of refractory ITP with bortezomib, a proteasome inhibitor. This strategy has been successful in relapsing thrombotic thrombocytopenic purpura but is a novel therapeutic approach for ITP. Further research use of proteasome inhibition in refractory ITP may be warranted.


Assuntos
Bortezomib/uso terapêutico , Inibidores de Proteassoma/uso terapêutico , Púrpura Trombocitopênica Idiopática/tratamento farmacológico , Feminino , Humanos , Fatores Imunológicos/uso terapêutico , Pessoa de Meia-Idade , Receptores de Trombopoetina/agonistas , Recidiva , Resultado do Tratamento
17.
Blood ; 129(18): 2537-2546, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28251913

RESUMO

Red blood cells (RBCs) demonstrate procoagulant properties in vitro, and elevated hematocrit is associated with reduced bleeding and increased thrombosis risk in humans. These observations suggest RBCs contribute to thrombus formation. However, effects of RBCs on thrombosis are difficult to assess because humans and mice with elevated hematocrit typically have coexisting pathologies. Using an experimental model of elevated hematocrit in healthy mice, we measured effects of hematocrit in 2 in vivo clot formation models. We also assessed thrombin generation, platelet-thrombus interactions, and platelet accumulation in thrombi ex vivo, in vitro, and in silico. Compared with controls, mice with elevated hematocrit (RBCHIGH) formed thrombi at a faster rate and had a shortened vessel occlusion time. Thrombi in control and RBCHIGH mice did not differ in size or fibrin content, and there was no difference in levels of circulating thrombin-antithrombin complexes. In vitro, increasing the hematocrit increased thrombin generation in the absence of platelets; however, this effect was reduced in the presence of platelets. In silico, direct numerical simulations of whole blood predicted elevated hematocrit increases the frequency and duration of interactions between platelets and a thrombus. When human whole blood was perfused over collagen at arterial shear rates, elevating the hematocrit increased the rate of platelet deposition and thrombus growth. These data suggest RBCs promote arterial thrombosis by enhancing platelet accumulation at the site of vessel injury. Maintaining a normal hematocrit may reduce arterial thrombosis risk in humans.


Assuntos
Antitrombina III/metabolismo , Artérias , Coagulação Sanguínea , Peptídeo Hidrolases/metabolismo , Trombose/metabolismo , Lesões do Sistema Vascular/metabolismo , Animais , Artérias/lesões , Artérias/metabolismo , Plaquetas , Feminino , Hematócrito , Humanos , Masculino , Camundongos , Resistência ao Cisalhamento
18.
J Biol Chem ; 286(5): 3194-202, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21106538

RESUMO

Heme oxygenase-1 (HO-1) enzyme plays a critical role in metabolizing the excess heme generated during hemolysis. Our previous studies suggested that during intravascular hemolysis the expression of HO-1 protein is not sufficient to reduce the oxidative burden of free heme in the vasculature. This led us to hypothesize that a post-translational mechanism of control exists for HO-1 expression. Micro-RNAs (miRNA) affect gene expression by post-transcriptional gene regulation of transcripts. We performed in silico analysis for the human HMOX1-3' untranslated region (3' UTR) and identified candidate miRNA binding sites. Two candidate miRNAs, miR-377 and miR-217, were cloned and co-transfected with a luciferase vector containing the human HMOX1-3'UTR region. The combination of miR-377 and miR-217 produced a 58% reduction in HMOX1-3'UTR luciferase reporter expression compared with controls. The same constructs were then used to assess how overexpression of miR-217 and miR-377 affected HO-1 levels after induction with hemin. Cells transfected with the combination of miR-377 and miR-217 exhibited no change in HMOX1 mRNA levels, but a significant reduction in HMOX1 (HO-1) protein expression and enzyme activity compared with non-transfected hemin-stimulated controls. Transfection with either miR-377 or miR-217 alone did not produce a significant decrease in HO-1 protein expression or enzyme activity. Knockdown of miR-217 and miR-377 in combination leads to up-regulation of HO-1 protein. Exposure to hemin induced a significant reduction in miR-217 expression and a trend toward decreased miR-377 expression in two different cells lines. In summary, these data suggests that the combination of miR-377 and miR-217 help regulate HO-1 protein expression in the presence of hemin.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/genética , MicroRNAs/genética , Sinergismo Farmacológico , Quimioterapia Combinada , Heme Oxigenase-1/biossíntese , Hemina/farmacologia , Humanos , MicroRNAs/farmacologia , Transfecção
19.
J Mol Med (Berl) ; 88(7): 665-75, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20306336

RESUMO

Increases in heme oxygenase-1 (HO-1) and administration of heme degradation products CO and biliverdin inhibit vascular inflammation and vasoocclusion in mouse models of sickle cell disease (SCD). In this study, an albumin (alb) promoter-driven Sleeping Beauty (SB) transposase plasmid with a wild-type rat hmox-1 (wt-HO-1) transposable element was delivered by hydrodynamic tail vein injections to SCD mice. Eight weeks after injection, SCD mice had three- to five-fold increases in HO-1 activity and protein expression in liver, similar to hemin-treated mice. Immunohistochemistry demonstrated increased perinuclear HO-1 staining in hepatocytes. Messenger RNA transcription of the hmox-1 transgene in liver was confirmed by quantitative real-time polymerase chain reaction restriction fragment length polymorphism (qRT-PCR RFLP) with no detectible transgene expression in other organs. The livers of all HO-1 overexpressing mice had activation of nuclear phospho-p38 mitogen-activated protein kinase (MAPK) and phospho-Akt, decreased nuclear expression of nuclear factor-kappa B (NF-kappaB) p65, and decreased soluble vascular cell adhesion molecule-1 (sVCAM-1) in serum. Hypoxia-induced stasis, a characteristic of SCD, but not normal mice, was inhibited in dorsal skin fold chambers in wt-HO-1 SCD mice despite the absence of hmox-1 transgene expression in the skin suggesting distal effects of HO activity on the vasculature. No protective effects were seen in SCD mice injected with nonsense (ns-) rat hmox-1 that encodes carboxy-truncated HO-1 with little or no enzyme activity. We speculate that HO-1 gene delivery to the liver is beneficial in SCD mice by degrading pro-oxidative heme, releasing anti-inflammatory heme degradation products CO and biliverdin/bilirubin into circulation, activating cytoprotective pathways and inhibiting vascular stasis at sites distal to transgene expression.


Assuntos
Anemia Falciforme , Vasos Sanguíneos/fisiopatologia , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Terapia Genética/métodos , Heme Oxigenase-1/genética , Transposases , Anemia Falciforme/genética , Anemia Falciforme/fisiopatologia , Anemia Falciforme/terapia , Animais , Sequência de Bases , Feminino , Heme Oxigenase-1/metabolismo , Humanos , Fígado/citologia , Fígado/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Ratos , Fluxo Sanguíneo Regional , Transposases/genética , Transposases/metabolismo
20.
Antioxid Redox Signal ; 12(2): 233-48, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19697995

RESUMO

Heme is an essential molecule in aerobic organisms. Heme consists of protoporphyrin IX and a ferrous (Fe(2+)) iron atom, which has high affinity for oxygen (O(2)). Hemoglobin, the major oxygen-carrying protein in blood, is the most abundant heme-protein in animals and humans. Hemoglobin consists of four globin subunits (alpha(2)beta(2)), with each subunit carrying a heme group. Ferrous (Fe(2+)) hemoglobin is easily oxidized in circulation to ferric (Fe(3+)) hemoglobin, which readily releases free hemin. Hemin is hydrophobic and intercalates into cell membranes. Hydrogen peroxide can split the heme ring and release "free" redox-active iron, which catalytically amplifies the production of reactive oxygen species. These oxidants can oxidize lipids, proteins, and DNA; activate cell-signaling pathways and oxidant-sensitive, proinflammatory transcription factors; alter protein expression; perturb membrane channels; and induce apoptosis and cell death. Heme-derived oxidants induce recruitment of leukocytes, platelets, and red blood cells to the vessel wall; oxidize low-density lipoproteins; and consume nitric oxide. Heme metabolism, extracellular and intracellular defenses against heme, and cellular cytoprotective adaptations are emphasized. Sickle cell disease, an archetypal example of hemolysis, heme-induced oxidative stress, and cytoprotective adaptation, is reviewed.


Assuntos
Heme/metabolismo , Anemia Falciforme/metabolismo , Animais , Vasos Sanguíneos/lesões , Ativação Enzimática/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Hemina/metabolismo , Hemina/farmacologia , Hemoglobinas/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Camundongos , Modelos Biológicos , Oxidantes/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...