Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 695: 108621, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33049293

RESUMO

Structural determinations of members of the sulfotransferase (SULT) family suggest a direct interaction between a conserved tryptophanyl side chain and bound 3'-phosphoadenosine-5'-phosphate (PAP). We have prepared and purified mutants of the bovine SULT1A1, a very conserved homolog to the human SULT1A1, in which tryptophanyl-53 was sequentially trimmed to tyrosine, leucine, and alanine. Differential scanning fluorimetry indicated structural stabilities of the mutant proteins comparable to the wild type SULT1A1; however, less thermal stabilizations by PAP plus pentachlorophenol were observed with the mutants, suggesting weakened ligand binding. Protein fluorescence of the wild type enzyme decreased 6.5% upon binding PAP, whereas no changes occurred with the mutant enzymes. This reveals that W53, or its positional counterpart, has been the source of emission intensity changes used in previous investigations of other SULTs. Fluorescence resonance energy transfer from excited tryptophans to bound 7-hydroxycoumarin, as induced by PAP, indicated weakened binding of ligands to the mutant SULTs. This was also encountered and quantified in initial rate kinetic analyses. Ablation of the PAPS adenine-to-W53 ring interaction, shown by the W53A mutant enzyme, resulted in a 6.4-fold increase in KPAPS and a 92% decrease in kcat/KPAPS. Measured KPAPS values reveal the W53 indole ring contribution to PAPS binding to be 1.1 kcal/mol (4.6 kJ/mol). These results verify the structurally-inferred role for the π-π stacking interaction between PAP(S) and the conserved tryptophanyl residue in SULT1A1 and other members of the SULT family.


Assuntos
Arilsulfotransferase/química , Substituição de Aminoácidos , Arilsulfotransferase/genética , Sítios de Ligação , Catálise , Transferência Ressonante de Energia de Fluorescência , Humanos , Mutação de Sentido Incorreto , Triptofano/química , Triptofano/genética
2.
Arch Biochem Biophys ; 457(2): 197-204, 2007 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17125724

RESUMO

Phenol sulfotransferases (SULTs), which normally bind 3'-phosphoadenosine-5'-phosphosulfate as the donor substrate, are inhibited by CoA and its thioesters. Here, we report that inhibition of bovine SULT1A1 by CoA is time-dependent at neutral pH under non-reducing conditions. The rates of inactivation by CoA indicate an initial reversible SULT:CoA complex with a dissociation constant of 5.7 microM and an inactivation rate constant of 0.07 min(-1). Titrations with CoA and prolonged incubations reveal that inactivation of the dimeric enzyme is stoichiometric, consistent with the observation of complete conversion of the protein to a slightly decreased electrophoretic mobility. Both activity and normal electrophoretic migration are restored by 2-mercaptoethanol. Mutagenesis demonstrated that Cys168 is the site of CoA adduction, and a consistent model was constructed that reveals a new SULT molecular dynamic. Cysteine reaction kinetics with Ellman's reagent revealed a PAPS-induced structural change consistent with the model that accounts for binding of CoA.


Assuntos
Arilsulfotransferase/química , Coenzima A/química , Sulfetos/química , Animais , Arilsulfotransferase/antagonistas & inibidores , Arilsulfotransferase/genética , Bovinos , Cisteína/química , Cisteína/genética , Ativação Enzimática , Concentração de Íons de Hidrogênio , Cinética , Mercaptoetanol/química , Modelos Moleculares , Mutação
3.
Biochim Biophys Acta ; 1648(1-2): 134-9, 2003 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-12758156

RESUMO

Phenol sulfotransferases (SULT1s, EC 2.8.2.1) catalyze sulfuryl group transfer from 3'-phosphoadenosine-5'-phosphosulfate (PAPS) to the hydroxyl oxygen of aromatic acceptor substrates. Previous work with the bovine SULT1A1 has utilized the highly fluorescent substrate 7-hydroxycoumarin (7-HC, umbelliferone) as an acceptor substrate [Biochem. Biophys. Res. Commun. 261 (1999) 815]. Here we report that adenosine-3',5'-bisphosphate (PAP)-dependent binding of 7-HC to bSULT1A1 can be observed due to the appearance of a 400-420-nm shoulder in the emission spectrum, using an excitation wavelength of 280 nm. This emission was observed by placing 7-HC in ethanol, which is consistent with bSULT1A1 phenol binding site hydrophobicity. Titrations with 7-HC indicate a K(d) for 7-HC of 0.58 microM and substoichiometric binding to the homodimeric enzyme. The bSULT1A1:PAP:7-HC complex could be disrupted with pentachlorophenol (PCP), titrations with which indicated 0.5 equivalents per enzyme subunit. Titrations of enzyme plus 7-HC with PAP also indicated 0.5 equivalents per enzyme subunit. These results suggest a model of homodimeric bSULT1A1 in which subunit interactions favor half-site reactivity in the formation of a dead end complex.


Assuntos
Arilsulfotransferase , Sulfotransferases/química , Umbeliferonas/química , Animais , Bovinos , Ratos , Espectrometria de Fluorescência , Sulfotransferases/metabolismo , Umbeliferonas/metabolismo
4.
J Biol Chem ; 277(42): 39296-303, 2002 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-12167648

RESUMO

Previous work with the bovine phenol sulfotransferase (bSULT1A1, EC ) demonstrated inhibition by CoA that was competitive with respect to the sulfuryl donor substrate, 3'-phosphoadenosine-5'-phosphosulfate (PAPS) (Leach, M., Cameron, E., Fite, N., Stassinopoulos, J., Palmreuter, N., and Beckmann, J. D. (1999) Biochem. Biophys. Res. Commun. 261, 815-819). Here we report that long chain acyl-CoAs are more potent inhibitors of bSULT1A1 and also of human dopamine sulfotransferase (SULT1A3) when compared with unesterified CoA and short chain-length acyl-CoAs. A complex pattern of inhibition was revealed by systematic variation of palmitoyl-CoA, PAPS, and 7-hydroxycoumarin, the acceptor substrate. Convex plots of apparent K(m)/V(max) versus [palmitoyl-CoA] were adequately modeled using an ordered rapid equilibrium scheme with PAPS as the leading substrate and by accounting for the possible binding of two equivalents of inhibitor to the dimeric enzyme. Interestingly, the first K(i) of 2-3 microm was followed by a second K(i) of only 0.01-0.05 microm, suggesting that positive subunit cooperativity enhances binding of long chain acyl-CoAs to this sulfotransferase. Simultaneous interaction of palmitoyl-CoA with both the nucleotide and phenol binding sites is suggested by two experiments. First, the acyl-CoA displaced 7-hydroxycoumarin from the highly fluorescent bSULT1A1.PAP.7-HC complex in a cooperative manner. Second, palmitoyl-CoA prevented the quenching of bSULT1A1 fluorescence observed with pentachlorophenol. Finally, titrations of bSULT1A1-pentachlorophenol complex with palmitoyl-CoA caused the return of protein fluorescence, and the binding of palmitoyl-CoA was highly cooperative (Hill constant of 1.9). Overall, these results suggest a model of sulfotransferase inhibition in which the 3'-phosphoadenosine-5'-diphosphate moiety of CoA docks to the PAPS domain, and the acyl-pantetheine group docks to the hydrophobic phenol binding domain.


Assuntos
Arilsulfotransferase/antagonistas & inibidores , Coenzima A/metabolismo , Inibidores Enzimáticos/farmacologia , Ésteres/metabolismo , Animais , Bovinos , Relação Dose-Resposta a Droga , Escherichia coli/metabolismo , Humanos , Concentração Inibidora 50 , Cinética , Modelos Químicos , Palmitoil Coenzima A/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...