Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(22): 15562-15575, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38771742

RESUMO

Sulfur trioxide (SO3) is an important oxide of sulfur and a key intermediate in the formation of sulfuric acid (H2SO4, SA) in the Earth's atmosphere. This conversion to SA occurs rapidly due to the reaction of SO3 with a water dimer. However, gas-phase SO3 has been measured directly at concentrations that are comparable to that of SA under polluted mega-city conditions, indicating gaps in our current understanding of the sources and fates of SO3. Its reaction with atmospheric acids could be one such fate that can have significant implications for atmospheric chemistry. In the present investigation, laboratory experiments were conducted in a flow reactor to generate a range of previously uncharacterized condensable sulfur-containing reaction products by reacting SO3 with a set of atmospherically relevant inorganic and organic acids at room temperature and atmospheric pressure. Specifically, key inorganic acids known to be responsible for most ambient new particle formation events, iodic acid (HIO3, IA) and SA, are observed to react promptly with SO3 to form iodic sulfuric anhydride (IO3SO3H, ISA) and disulfuric acid (H2S2O7, DSA). Carboxylic sulfuric anhydrides (CSAs) were observed to form by the reaction of SO3 with C2 and C3 monocarboxylic (acetic and propanoic acid) and dicarboxylic (oxalic and malonic acid)-carboxylic acids. The formed products were detected by a nitrate-ion-based chemical ionization atmospheric pressure interface time-of-flight mass spectrometer (NO3--CI-APi-TOF; NO3--CIMS). Quantum chemical methods were used to compute the relevant SO3 reaction rate coefficients, probe the reaction mechanisms, and model the ionization chemistry inherent in the detection of the products by NO3--CIMS. Additionally, we use NO3--CIMS ambient data to report that significant concentrations of SO3 and its acid anhydride reaction products are present under polluted, marine and polar, and volcanic plume conditions. Considering that these regions are rich in the acid precursors studied here, the reported reactions need to be accounted for in the modeling of atmospheric new particle formation.

2.
Sci Total Environ ; 898: 165466, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37451445

RESUMO

This study aims to picture the phenomenology of urban ambient total lung deposited surface area (LDSA) (including head/throat (HA), tracheobronchial (TB), and alveolar (ALV) regions) based on multiple path particle dosimetry (MPPD) model during 2017-2019 period collected from urban background (UB, n = 15), traffic (TR, n = 6), suburban background (SUB, n = 4), and regional background (RB, n = 1) monitoring sites in Europe (25) and USA (1). Briefly, the spatial-temporal distribution characteristics of the deposition of LDSA, including diel, weekly, and seasonal patterns, were analyzed. Then, the relationship between LDSA and other air quality metrics at each monitoring site was investigated. The result showed that the peak concentrations of LDSA at UB and TR sites are commonly observed in the morning (06:00-8:00 UTC) and late evening (19:00-22:00 UTC), coinciding with traffic rush hours, biomass burning, and atmospheric stagnation periods. The only LDSA night-time peaks are observed on weekends. Due to the variability of emission sources and meteorology, the seasonal variability of the LDSA concentration revealed significant differences (p = 0.01) between the four seasons at all monitoring sites. Meanwhile, the correlations of LDSA with other pollutant metrics suggested that Aitken and accumulation mode particles play a significant role in the total LDSA concentration. The results also indicated that the main proportion of total LDSA is attributed to the ALV fraction (50 %), followed by the TB (34 %) and HA (16 %). Overall, this study provides valuable information of LDSA as a predictor in epidemiological studies and for the first time presenting total LDSA in a variety of European urban environments.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Material Particulado/análise , Emissões de Veículos/análise , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Poeira , Pulmão , Europa (Continente) , Tamanho da Partícula
3.
Environ Sci Technol Lett ; 10(6): 520-527, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37333938

RESUMO

Delhi, India, suffers from periods of very poor air quality, but little is known about the chemical production of secondary pollutants in this highly polluted environment. During the postmonsoon period in 2018, extremely high nighttime concentrations of NOx (NO and NO2) and volatile organic compounds (VOCs) were observed, with median NOx mixing ratios of ∼200 ppbV (maximum of ∼700 ppbV). A detailed chemical box model constrained to a comprehensive suite of speciated VOC and NOx measurements revealed very low nighttime concentrations of oxidants, NO3, O3, and OH, driven by high nighttime NO concentrations. This results in an atypical NO3 diel profile, not previously reported in other highly polluted urban environments, significantly perturbing nighttime radical oxidation chemistry. Low concentrations of oxidants and high nocturnal primary emissions coupled with a shallow boundary layer led to enhanced early morning photo-oxidation chemistry. This results in a temporal shift in peak O3 concentrations when compared to the premonsoon period (12:00 and 15:00 local time, respectively). This shift will likely have important implications on local air quality, and effective urban air quality management should consider the impacts of nighttime emission sources during the postmonsoon period.

4.
Environ Pollut ; 331(Pt 1): 121830, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37211228

RESUMO

Estimates of tyre and brake wear emission factors are presented, derived from data collected from roadside and urban background sites on the premises of the University of Birmingham, located in the UK's second largest city. Size-fractionated particulate matter samples were collected at both sites concurrently in the spring/summer of 2019 and analysed for elemental concentrations and magnetic properties. Using Positive Matrix Factorisation (PMF), three sources were identified in the roadside mass increment of the 1.0-9.9 µm stages of MOUDI impactors located at both sites, namely: brake dust (7.1%); tyre dust (9.6%); and crustal (83%). The large fraction of the mass apportioned to crustal material was suspected to be mainly from a nearby construction site rather than resuspension of road dust. By using Ba and Zn as elemental tracers, brake and tyre wear emission factors were estimated as 7.4 mg/veh.km and 9.9 mg/veh.km, respectively, compared with the PMF-derived equivalent values of 4.4 mg/veh.km and 11 mg/veh.km. Based on the magnetic measurements, an emission factor can be estimated independently for brake dust of 4.7 mg/veh.km. A further analysis was carried out on the concurrently measured roadside increment in the particle number size distribution (10 nm-10 µm). Four factors were identified in the hourly measurements: traffic exhaust nucleation; traffic exhaust solid particles; windblown dust; and an unknown source. The high increment of the windblown dust factor, 3.2 µg/m3, was comparable in magnitude to the crustal factor measured using the MOUDI samples (3.5 µg/m3). The latter's polar plot indicated that this factor was dominated by a large neighbouring construction site. The number emission factors of the exhaust solid particle and exhaust nucleation factors were estimated as 2.8 and 1.9 x 1012/veh.km, respectively.


Assuntos
Poluentes Atmosféricos , Poeira , Poeira/análise , Monitoramento Ambiental , Material Particulado/análise , Emissões de Veículos/análise , Cidades , Tamanho da Partícula , Poluentes Atmosféricos/análise
5.
Environ Int ; 174: 107907, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37012195

RESUMO

Air quality is one of the most important factors in public health. While outdoor air quality is widely studied, the indoor environment has been less scrutinised, even though time spent indoors is typically much greater than outdoors. The emergence of low-cost sensors can help assess indoor air quality. This study provides a new methodology, utilizing low-cost sensors and source apportionment techniques, to understand the relative importance of indoor and outdoor air pollution sources upon indoor air quality. The methodology is tested with three sensors placed in different rooms inside an exemplar house (bedroom, kitchen and office) and one outdoors. When the family was present, the bedroom had the highest average concentrations for PM2.5 and PM10 (3.9 ± 6.8 ug/m3 and 9.6 ± 12.7 µg/m3 respectively), due to the activities undertaken there and the presence of softer furniture and carpeting. The kitchen, while presenting the lowest PM concentrations for both size ranges (2.8 ± 5.9 ug/m3 and 4.2 ± 6.9 µg/m3 respectively), presented the highest PM spikes, especially during cooking times. Increased ventilation in the office resulted in the highest PM1 concentration (1.6 ± 1.9 µg/m3), highlighting the strong effect of infiltration of outdoor air for the smallest particles. Source apportionment, via positive matrix factorisation (PMF), showed that up to 95 % of the PM1 was found to be of outdoor sources in all the rooms. This effect was reduced as particle size increased, with outdoor sources contributing >65 % of the PM2.5, and up to 50 % of the PM10, depending on the room studied. The new approach to elucidate the contributions of different sources to total indoor air pollution exposure, described in this paper, is easily scalable and translatable to different indoor locations.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Material Particulado/análise , Poluição do Ar em Ambientes Fechados/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Tamanho da Partícula
6.
Environ Sci Technol ; 57(12): 4741-4750, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36930743

RESUMO

New particle formation (NPF) is a leading source of particulate matter by number and a contributor to particle mass during haze events. Reductions in emissions of air pollutants, many of which are NPF precursors, are expected in the move toward carbon neutrality or net-zero. Expected changes to pollutant emissions are used to investigate future changes to NPF processes, in comparison to a simulation of current conditions. The projected changes to SO2 emissions are key in changing future NPF number, with different scenarios producing either a doubling or near total reduction in sulfuric acid-amine particle formation rates. Particle growth rates are projected to change little in all but the strictest emission control scenarios. These changes will reduce the particle mass arising by NPF substantially, thus showing a further cobenefit of net-zero policies. Major uncertainties remain in future NPF including the volatility of oxygenated organic molecules resulting from changes to NOx and amine emissions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Pequim , Tamanho da Partícula , Monitoramento Ambiental/métodos , Aerossóis/análise , Poluentes Atmosféricos/análise , Material Particulado/análise , Aminas , Poluição do Ar/prevenção & controle , Poluição do Ar/análise
7.
Environ Int ; 174: 107888, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36965399

RESUMO

Diesel engines are a major contributor to emissions of both Black Carbon (BC) and ultrafine particles. Analysis of data from the only roadside monitoring site in Europe with a continuous dataset for size-segregated particle number count (Marylebone Road, London) from 2010 to 2021 reveals that the growing number of vehicles fitted with a Diesel Oxidation Catalyst (DOC) and Diesel Particle Filter (DPF) has been very effective in controlling the emissions of solid particles and hence BC, but that there has been little change in the liquid mode (<30 nm) particles, and that concentrations of ultrafine particles (<100 nm) still well exceed the threshold for "high" concentrations (>104 cm-3 /24-hour mean) defined by WHO. BC declined by 81% between 2014 and 2021, but the ultrafine particle (<100 nm) count declined by only 26%. Consequently, in locations worldwide with heavy diesel traffic, concentrations of ultrafine particles are likely to remain "high" for the foreseeable future unless more effective abatement technologies are implemented.


Assuntos
Poluentes Atmosféricos , Material Particulado , Material Particulado/análise , Poluentes Atmosféricos/análise , Emissões de Veículos/análise , Monitoramento Ambiental , Londres , Tamanho da Partícula
8.
Sci Total Environ ; 858(Pt 2): 159814, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36374758

RESUMO

It is often assumed that a small proportion of a given vehicle fleet produces a disproportionate amount of air pollution emissions. If true, policy actions to target the highly polluting section of the fleet could lead to significant improvements in air quality. In this paper, high-emitter vehicle subsets are defined and their contributions to the total fleet emission are assessed. A new approach, using enrichment factor in cumulative Pareto analysis is proposed for detecting high emitter vehicle subsets within the vehicle fleet. A large dataset (over 94,000 remote-sensing measurements) from five UK-based EDAR (emission detecting and reporting system) field campaigns for the years 2016-17 is used as the test data. In addition to discussions about the high emitter screening criteria, the data analysis procedure and future issues of implementation are discussed. The results show different high emitter trends dependent on the pollutant investigated, and the vehicle type investigated. For example, the analysis indicates that 23 % and 51 % of petrol and diesel cars were responsible for 80 % of NO emissions within that subset of the fleet, respectively. Overall, the contributions of vehicles that account for 80 % of total fleet emissions usually reduce with EURO class improvement, with the subset fleet emissions becoming more homogenous. The high emitter constituent was more noticeable for pollutant PM compared with the other gaseous pollutants, and it was also more prominent for petrol cars when compared to diesel ones.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Emissões de Veículos/análise , Poluentes Atmosféricos/análise , Tecnologia de Sensoriamento Remoto/métodos , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Gasolina/análise , Veículos Automotores
9.
NPJ Clim Atmos Sci ; 5(1): 71, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120117

RESUMO

In order to predict the impacts of reductions in air pollutant emissions, it is important to know whether secondary pollutant concentrations will decline in direct proportion to the reduction in their precursor, referred to as linearity. Trends in airborne concentrations of nitrate, sulfate, and SOC at sites in southern England are compared with emissions and concentration trends for sulfur dioxide (SO2), oxides of nitrogen (NO x ), and non-methane VOC, and show some increased ratios of concentrations to emissions, strongly suggestive of non-linearity in the primary-secondary pollutant relationships for nitrate, but not the other pollutants. Analysis of a further 20-year dataset from the AGANET network shows a decline of nitrate concentrations significantly lower than that of NO x emissions and ambient NO x concentrations. For sulfate, the decline lies between that of emissions and airborne concentrations of SO2. Back trajectory analysis and Potential Source Contribution Function mapping for 2014-2018 show that the highest concentrations of secondary constituents in southern England are associated with air masses originating in mainland Europe, with 42% of sulfate, 55% of nitrate, and 35% of SOC estimated to be associated with air masses entering the UK from the European mainland.

10.
Environ Sci Technol ; 56(16): 11189-11198, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35878000

RESUMO

Atmospheric aerosols are important drivers of Arctic climate change through aerosol-cloud-climate interactions. However, large uncertainties remain on the sources and processes controlling particle numbers in both fine and coarse modes. Here, we applied a receptor model and an explainable machine learning technique to understand the sources and drivers of particle numbers from 10 nm to 20 µm in Svalbard. Nucleation, biogenic, secondary, anthropogenic, mineral dust, sea salt and blowing snow aerosols and their major environmental drivers were identified. Our results show that the monthly variations in particles are highly size/source dependent and regulated by meteorology. Secondary and nucleation aerosols are the largest contributors to potential cloud condensation nuclei (CCN, particle number with a diameter larger than 40 nm as a proxy) in the Arctic. Nonlinear responses to temperature were found for biogenic, local dust particles and potential CCN, highlighting the importance of melting sea ice and snow. These results indicate that the aerosol factors will respond to rapid Arctic warming differently and in a nonlinear fashion.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , Poeira/análise , Aprendizado de Máquina , Tamanho da Partícula , Svalbard
11.
Environ Pollut ; 290: 118105, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34523530

RESUMO

Road transport is the main anthropogenic source of NOx in Europe, affecting human health and ecosystems. Thus, mitigation policies have been implemented to reduce on-road vehicle emissions, particularly through the Euro standard limits. To evaluate the effectiveness of these policies, we calculated NO2 and NOx concentration trends using air quality and meteorological measurements conducted in three European cities over 26 years. These data were also employed to estimate the trends in NOx emission factors (EFNOx, based on inverse dispersion modeling) and NO2:NOx emission ratios for the vehicle fleets under real-world driving conditions. In the period 1998-2017, Copenhagen and Stockholm showed large reductions in both the urban background NOx concentrations (-2.1 and -2.6% yr-1, respectively) and EFNOx at curbside sites (68 and 43%, respectively), proving the success of the Euro standards in diminishing NOx emissions. London presented a modest decrease in urban background NOx concentrations (-1.3% yr-1), while EFNOx remained rather constant at the curbside site (Marylebone Road) due to the increase in public bus traffic. NO2 primary emissions -that are not regulated- increased until 2008-2010, which also reflected in the ambient concentrations. This increase was associated with a strong dieselization process and the introduction of new after-treatment technologies that targeted the emission reduction of other species (e.g., greenhouse gases or particulate matter). Thus, while regulations on ambient concentrations of specific species have positive effects on human health, the overall outcomes should be considered before widely adopting them. Emission inventories for the on-road transportation sector should include EFNOx derived from real-world measurements, particularly in urban settings.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Ecossistema , Monitoramento Ambiental , Humanos , Londres , Óxidos de Nitrogênio/análise , Emissões de Veículos/análise
12.
Environ Sci Technol ; 54(13): 7807-7817, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32501707

RESUMO

We present shipborne measurements of size-resolved concentrations of aerosol components across ocean waters next to the Antarctic Peninsula, South Orkney Islands, and South Georgia Island, evidencing aerosol features associated with distinct eco-regions. Nonmethanesulfonic acid Water-Soluble Organic Matter (WSOM) represented 6-8% and 11-22% of the aerosol PM1 mass originated in open ocean (OO) and sea ice (SI) regions, respectively. Other major components included sea salt (86-88% OO, 24-27% SI), non sea salt sulfate (3-4% OO, 35-40% SI), and MSA (1-2% OO, 11-12% SI). The chemical composition of WSOM encompasses secondary organic components with diverse behaviors: while alkylamine concentrations were higher in SI air masses, oxalic acid showed higher concentrations in the open ocean air. Our online single-particle mass spectrometry data exclude a widespread source from sea bird colonies, while the secondary production of oxalic acid and sulfur-containing organic species via cloud processing is suggested. We claim that the potential impact of the sympagic planktonic ecosystem on aerosol composition has been overlooked in past studies, and multiple eco-regions act as distinct aerosol sources around Antarctica.


Assuntos
Poluentes Atmosféricos , Ecossistema , Aerossóis/análise , Poluentes Atmosféricos/análise , Regiões Antárticas , Monitoramento Ambiental , Sulfatos
13.
Sci Total Environ ; 734: 139416, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32464378

RESUMO

This paper reports upon and analyses vehicle emissions measured by the Emissions Detecting and Reporting (EDAR) system, a Vehicle Emissions Remote Sensing System (VERSS) type device, used in five UK based field campaigns in 2016 and 2017. In total 94,940 measurements were made of 75,622 individual vehicles during the five campaigns. The measurements are subset into vehicle type (bus, car, HGV, minibus, motorcycle, other, plant, taxi, van, and unknown), fuel type for car (petrol and diesel), and EURO class, and particulate matter (PM), nitric oxide (NO) and nitrogen dioxide (NO2) are reported. In terms of recent EURO class emission trends, NO and NOx emissions decrease from EURO 5 to EURO 6 for nearly all vehicle categories. Interestingly, taxis show a marked increase in NO2 emissions from EURO 5 to EURO 6. Perhaps most concerningly is a marked increase in PM emissions from EURO 5 to EURO 6 for HGVs. Another noteworthy observation was that vans, buses and HGVs of unknown EURO class were often the dirtiest vehicles in their classes, suggesting that where counts of such vehicles are high, they will likely make a significant contribution to local emissions. Using Vehicle Specific Power (VSP) weighting we provide an indication of the magnitude of the on-site VERSS bias and also a closer estimate of the regulatory test/on-road emissions differences. Finally, a new 'EURO Updating Potential' (EUP) factor is introduced, to assess the effect of a range of air pollutant emissions restricted zones either currently in use or marked for future introduction. In particular, the effects of the London based Low Emission Zone (LEZ) and Ultra-Low Emissions Zone (ULEZ), and the proposed Birmingham based Clean Air Zone (CAZ) are estimated. With the current vehicle fleet, the impacts of the ULEZ and CAZ will be far more significant than the LEZ, which was introduced in 2008.

14.
Environ Int ; 135: 105345, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31810011

RESUMO

Ultrafine particles (UFP) are suspected of having significant impacts on health. However, there have only been a limited number of studies on sources of UFP compared to larger particles. In this work, we identified and quantified the sources and processes contributing to particle number size distributions (PNSD) using Positive Matrix Factorization (PMF) at six monitoring stations (four urban background and two street canyon) from four European cities: Barcelona, Helsinki, London, and Zurich. These cities are characterised by different meteorological conditions and emissions. The common sources across all stations were Photonucleation, traffic emissions (3 sources, from fresh to aged emissions: Traffic nucleation, Fresh traffic - mode diameter between 13 and 37 nm, and Urban - mode diameter between 44 and 81 nm, mainly traffic but influenced by other sources in some cities), and Secondary particles. The Photonucleation factor was only directly identified by PMF for Barcelona, while an additional split of the Nucleation factor (into Photonucleation and Traffic nucleation) by using NOx concentrations as a proxy for traffic emissions was performed for all other stations. The sum of all traffic sources resulted in a maximum relative contributions ranging from 71 to 94% (annual average) thereby being the main contributor at all stations. In London and Zurich, the relative contribution of the sources did not vary significantly between seasons. In contrast, the high levels of solar radiation in Barcelona led to an important contribution of Photonucleation particles (ranging from 14% during the winter period to 35% during summer). Biogenic emissions were a source identified only in Helsinki (both in the urban background and street canyon stations), that contributed importantly during summer (23% in urban background). Airport emissions contributed to Nucleation particles at urban background sites, as the highest concentrations of this source took place when the wind was blowing from the airport direction in all cities.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Emissões de Veículos , Cidades , Europa (Continente) , Londres , Tamanho da Partícula , Material Particulado
15.
Proc Math Phys Eng Sci ; 474(2220): 20180492, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30602933

RESUMO

Diesel engine emissions are by far the largest source of nanoparticles in many urban atmospheres, in which they dominate the particle number count, and may present a significant threat to public health. This paper reviews knowledge of the composition and atmospheric properties of diesel exhaust particles, and exemplifies research in this field through a description of the FASTER project (Fundamental Studies of the Sources, Properties and Environmental Behaviour of Exhaust Nanoparticles from Road Vehicles) which studied the size distribution-and, in unprecedented detail, the chemical composition-of nanoparticles sampled from diesel engine exhaust. This information has been systematized and used to inform the development of computational modules that simulate the behaviour of the largely semi-volatile content of the nucleation mode particles, including consequent effects on the particle size distribution, under typical atmospheric conditions. Large-eddy model studies have informed a simpler characterization of flow around the urban built environment, and include aerosol processes. This modelling and engine-laboratory work have been complemented by laboratory measurements of vapour pressures, and the execution of two field measurement campaigns in London. The result is a more robust description of the dynamical behaviour on the sub-kilometre scale of diesel exhaust nanoparticles and their importance as an urban air pollutant.

16.
Sci Rep ; 7(1): 6047, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28729547

RESUMO

Climate warming affects the development and distribution of sea ice, but at present the evidence of polar ecosystem feedbacks on climate through changes in the atmosphere is sparse. By means of synergistic atmospheric and oceanic measurements in the Southern Ocean near Antarctica, we present evidence that the microbiota of sea ice and sea ice-influenced ocean are a previously unknown significant source of atmospheric organic nitrogen, including low molecular weight alkyl-amines. Given the keystone role of nitrogen compounds in aerosol formation, growth and neutralization, our findings call for greater chemical and source diversity in the modelling efforts linking the marine ecosystem to aerosol-mediated climate effects in the Southern Ocean.

17.
Sci Rep ; 7(1): 1152, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28442773

RESUMO

Road traffic is a major source of urban air pollution responsible for substantial premature mortality. Until recently, attention has focussed primarily on exhaust emissions of particulate matter from traffic as a causal factor. From analysis of air quality measurement data from the UK and France, we demonstrate that road traffic exhaust has a far greater impact on concentrations of nitrogen dioxide than of PM2.5. PM2.5 and carbonaceous particle concentrations have been declining appreciably since 2010/11 due to the use of diesel particle filters, but little change is seen in nitrogen dioxide over the period from 1995 to 2015. It is shown that the effect of NO2 from road traffic upon premature mortality was ten-fold greater than that of PM2.5 even before the widespread use of diesel particle filters, and is now considerably larger. The overwhelming contribution of diesel compared to gasoline-fuelled vehicles to emissions of both PM2.5 and NO2 emphasises the importance of further controls on emissions from diesels.


Assuntos
Poluição do Ar/legislação & jurisprudência , Saúde Pública , Emissões de Veículos/legislação & jurisprudência , Poluentes Atmosféricos/análise , França , Dióxido de Nitrogênio/análise , Material Particulado/análise , Reino Unido
18.
Environ Pollut ; 220(Pt B): 766-778, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27866854

RESUMO

London, like many major cities, has a noted air pollution problem, and a better understanding of the sources of airborne particles in the different size fractions will facilitate the implementation and effectiveness of control strategies to reduce air pollution. Thus, the trace elemental composition of the fine and coarse fraction were analysed at hourly time resolution at urban background (North Kensington, NK) and roadside (Marylebone Road, MR) sites within central London. Unlike previous work, the current study focuses on measurements during the summer providing a snapshot of contributing sources, utilising the high time resolution to improve source identification. Roadside enrichment was observed for a large number of elements associated with traffic emissions (Al, S, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Rb and Zr), while those elements that are typically from more regional sources (e.g. Na, Cl, S and K) were not found to have an appreciable increment. Positive Matrix Factorization (PMF) was applied for the source apportionment of the particle mass at both sites with similar sources being identified, including sea salt, airborne soil, traffic emissions, secondary inorganic aerosols and a Zn-Pb source. In the fine fraction, traffic emissions was the largest contributing source at MR (31.9%), whereas it was incorporated within an "urban background" source at NK, which had contributions from wood smoke, vehicle emissions and secondary particles. Regional sources were the major contributors to the coarse fraction at both sites. Secondary inorganic aerosols (which contained influences from shipping emissions and coal combustion) source factors accounted for around 33% of the PM10 at NK and were found to have the highest contributions from regional sources, including from the European mainland. Exhaust and non-exhaust sources both contribute appreciably to PM10 levels at the MR site, highlighting the continuing importance of vehicle-related air pollutants at roadside.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Cidades , Material Particulado/análise , População Rural , Oligoelementos/análise , Monitoramento Ambiental , Londres , Tamanho da Partícula , Estações do Ano , Emissões de Veículos/análise
19.
Atmos Environ (1994) ; 139: 56-74, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32288548

RESUMO

Atmospheric particles are of high concern due to their toxic properties and effects on climate, and large airports are known as significant sources of particles. This study investigates the contribution of the Airport of Venice (Italy) to black carbon (BC), total particle number concentrations (PNC) and particle number size distributions (PNSD) over a large range (14 nm-20 µm). Continuous measurements were conducted between April and June 2014 at a site located 110 m from the main taxiway and 300 m from the runway. Results revealed no significantly elevated levels of BC and PNC, but exhibited characteristic diurnal profiles. PNSD were then analysed using both k-means cluster analysis and positive matrix factorization. Five clusters were extracted and identified as midday nucleation events, road traffic, aircraft, airport and nighttime pollution. Six factors were apportioned and identified as probable sources according to the size profiles, directional association, diurnal variation, road and airport traffic volumes and their relationships to micrometeorology and common air pollutants. Photochemical nucleation accounted for ∼44% of total number, followed by road + shipping traffic (26%). Airport-related emissions accounted for ∼20% of total PNC and showed a main mode at 80 nm and a second mode beyond the lower limit of the SMPS (<14 nm). The remaining factors accounted for less than 10% of number counts, but were relevant for total volume concentrations: nighttime nitrate, regional pollution and local resuspension. An analysis of BC levels over different wind sectors revealed no especially significant contributions from specific directions associated with the main local sources, but a potentially significant role of diurnal dynamics of the mixing layer on BC levels. The approaches adopted in this study have identified and apportioned the main sources of particles and BC at an international airport located in area affected by a complex emission scenario. The results may underpin measures for improving local and regional air quality, and health impact assessment studies.

20.
Environ Sci Technol ; 49(6): 3330-40, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25695365

RESUMO

Positive matrix factorization (PMF) has been applied to single particle ATOFMS spectra collected on a six lane heavily trafficked road in central London (Marylebone Road), which well represents an urban street canyon. PMF analysis successfully extracted 11 factors from mass spectra of about 700,000 particles as a complement to information on particle types (from K-means cluster analysis). The factors were associated with specific sources and represent the contribution of different traffic related components (i.e., lubricating oils, fresh elemental carbon, organonitrogen and aromatic compounds), secondary aerosol locally produced (i.e., nitrate, oxidized organic aerosol and oxidized organonitrogen compounds), urban background together with regional transport (aged elemental carbon and ammonium) and fresh sea spray. An important result from this study is the evidence that rapid chemical processes occur in the street canyon with production of secondary particles from road traffic emissions. These locally generated particles, together with aging processes, dramatically affected aerosol composition producing internally mixed particles. These processes may become important with stagnant air conditions and in countries where gasoline vehicles are predominant and need to be considered when quantifying the impact of traffic emissions.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Veículos Automotores , Material Particulado/análise , Aerossóis/análise , Compostos de Amônio/análise , Carbono/análise , Análise por Conglomerados , Monitoramento Ambiental/estatística & dados numéricos , Humanos , Londres , Espectrometria de Massas , Compostos Orgânicos/análise , Tamanho da Partícula , Urbanização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...