Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32457888

RESUMO

Progress has been made in the field of neural interfacing using both mouse and rat models, yet standardization of these models' interchangeability has yet to be established. The mouse model allows for transgenic, optogenetic, and advanced imaging modalities which can be used to examine the biological impact and failure mechanisms associated with the neural implant itself. The ability to directly compare electrophysiological data between mouse and rat models is crucial for the development and assessment of neural interfaces. The most obvious difference in the two rodent models is size, which raises concern for the role of device-induced tissue strain. Strain exerted on brain tissue by implanted microelectrode arrays is hypothesized to affect long-term recording performance. Therefore, understanding any potential differences in tissue strain caused by differences in the implant to tissue size ratio is crucial for validating the interchangeability of rat and mouse models. Hence, this study is aimed at investigating the electrophysiological variances and predictive device-induced tissue strain. Rat and mouse electrophysiological recordings were collected from implanted animals for eight weeks. A finite element model was utilized to assess the tissue strain from implanted intracortical microelectrodes, taking into account the differences in the depth within the cortex, implantation depth, and electrode geometry between the two models. The rat model demonstrated a larger percentage of channels recording single unit activity and number of units recorded per channel at acute but not chronic time points, relative to the mouse model Additionally, the finite element models also revealed no predictive differences in tissue strain between the two rodent models. Collectively our results show that these two models are comparable after taking into consideration some recommendations to maintain uniform conditions for future studies where direct comparisons of electrophysiological and tissue strain data between the two animal models will be required.

2.
Acta Biomater ; 102: 205-219, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31733330

RESUMO

Higher order tasks in development for brain-computer interfacing applications require the invasiveness of intracortical microelectrodes. Unfortunately, the resulting inflammatory response contributes to the decline of detectable neural signal. The major components of the neuroinflammatory response to microelectrodes have been well-documented with histological imaging, leading to the identification of broad pathways of interest for its inhibition such as oxidative stress and innate immunity. To understand how to mitigate the neuroinflammatory response, a more precise understanding is required. Advancements in genotyping have led the development of new tools for developing temporal gene expression profiles. Therefore, we have meticulously characterized the gene expression profiles of the neuroinflammatory response to mice implanted with non-functional intracortical probes. A time course of differential acute expression of genes of the innate immune response were compared to naïve sham mice, identifying significant changes following implantation. Differential gene expression analysis revealed 22 genes that could inform future therapeutic targets. Particular emphasis is placed on the largest changes in gene expression occurring 24 h post-implantation, and in genes that are involved in multiple innate immune sets including Itgam, Cd14, and Irak4. STATEMENT OF SIGNIFICANCE: Current understanding of the cellular response contributing to the failure of intracortical microelectrodes has been limited to the evaluation of cellular presence around the electrode. Minimal research investigating gene expression profiles of these cells has left a knowledge gap identifying their phenotype. This manuscript represents the first robust investigation of the changes in gene expression levels specific to the innate immune response following intracortical microelectrode implantation. To understand the role of the complement system in response to implanted probes, we performed gene expression profiling over acute time points from implanted subjects and compared them to no-surgery controls. This manuscript provides valuable insights into inflammatory mechanisms at the tissue-probe interface, thus having a high impact on those using intracortical microelectrodes to study and treat neurological diseases and injuries.


Assuntos
Lesões Encefálicas/fisiopatologia , Córtex Cerebral/fisiopatologia , Eletrodos Implantados/efeitos adversos , Imunidade Inata/genética , Inflamação/fisiopatologia , Animais , Lesões Encefálicas/genética , Córtex Cerebral/cirurgia , Inflamação/genética , Masculino , Camundongos Endogâmicos C57BL , Microeletrodos/efeitos adversos , Transcriptoma
3.
Micromachines (Basel) ; 9(10)2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-30424419

RESUMO

Thiol-ene based shape memory polymers (SMPs) have been developed for use as intracortical microelectrode substrates. The unique chemistry provides precise control over the mechanical and thermal glass-transition properties. As a result, SMP substrates are stiff at room temperature, allowing for insertion into the brain without buckling and subsequently soften in response to body temperatures, reducing the mechanical mismatch between device and tissue. Since the surface chemistry of the materials can contribute significantly to the ultimate biocompatibility, as a first step in the characterization of our SMPs, we sought to isolate the biological response to the implanted material surface without regards to the softening mechanics. To accomplish this, we tightly controlled for bulk stiffness by comparing bare silicon 'dummy' devices to thickness-matched silicon devices dip-coated with SMP. The neuroinflammatory response was evaluated after devices were implanted in the rat cortex for 2 or 16 weeks. We observed no differences in the markers tested at either time point, except that astrocytic scarring was significantly reduced for the dip-coated implants at 16 weeks. The surface properties of non-softening thiol-ene SMP substrates appeared to be equally-tolerated and just as suitable as silicon for neural implant substrates for applications such as intracortical microelectrodes, laying the groundwork for future softer devices to improve upon the prototype device performance presented here.

4.
Front Neurosci ; 12: 772, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30429766

RESUMO

Intracortical microelectrodes record neuronal activity of individual neurons within the brain, which can be used to bridge communication between the biological system and computer hardware for both research and rehabilitation purposes. However, long-term consistent neural recordings are difficult to achieve, in large part due to the neuroinflammatory tissue response to the microelectrodes. Prior studies have identified many factors that may contribute to the neuroinflammatory response to intracortical microelectrodes. Unfortunately, each proposed mechanism for the prolonged neuroinflammatory response has been investigated independently, while it is clear that mechanisms can overlap and be difficult to isolate. Therefore, we aimed to determine whether the dual targeting of the innate immune response by inhibiting innate immunity pathways associated with cluster of differentiation 14 (CD14), and the mechanical mismatch could improve the neuroinflammatory response to intracortical microelectrodes. A thiol-ene probe that softens on contact with the physiological environment was used to reduce mechanical mismatch. The thiol-ene probe was both softer and larger in size than the uncoated silicon control probe. Cd14-/- mice were used to completely inhibit contribution of CD14 to the neuroinflammatory response. Contrary to the initial hypothesis, dual targeting worsened the neuroinflammatory response to intracortical probes. Therefore, probe material and CD14 deficiency were independently assessed for their effect on inflammation and neuronal density by implanting each microelectrode type in both wild-type control and Cd14-/- mice. Histology results show that 2 weeks after implantation, targeting CD14 results in higher neuronal density and decreased glial scar around the probe, whereas the thiol-ene probe results in more microglia/macrophage activation and greater blood-brain barrier (BBB) disruption around the probe. Chronic histology demonstrate no differences in the inflammatory response at 16 weeks. Over acute time points, results also suggest immunomodulatory approaches such as targeting CD14 can be utilized to decrease inflammation to intracortical microelectrodes. The results obtained in the current study highlight the importance of not only probe material, but probe size, in regard to neuroinflammation.

5.
Biomaterials ; 163: 163-173, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29471127

RESUMO

Intracortical microelectrodes afford researchers an effective tool to precisely monitor neural spiking activity. Additionally, intracortical microelectrodes have the ability to return function to individuals with paralysis as part of a brain computer interface. Unfortunately, the neural signals recorded by these electrodes degrade over time. Many strategies which target the biological and/or materials mediating failure modes of this decline of function are currently under investigation. The goal of this study is to identify a precise cellular target for future intervention to sustain chronic intracortical microelectrode performance. Previous work from our lab has indicated that the Cluster of Differentiation 14/Toll-like receptor pathway (CD14/TLR) is a viable target to improve chronic laminar, silicon intracortical microelectrode recordings. Here, we use a mouse bone marrow chimera model to selectively knockout CD14, an innate immune receptor, from either brain resident microglia or blood-derived macrophages, in order to understand the most effective targets for future therapeutic options. Using single-unit recordings we demonstrate that inhibiting CD14 from the blood-derived macrophages improves recording quality over the 16 week long study. We conclude that targeting CD14 in blood-derived cells should be part of the strategy to improve the performance of intracortical microelectrodes, and that the daunting task of delivering therapeutics across the blood-brain barrier may not be needed to increase intracortical microelectrode performance.


Assuntos
Células Sanguíneas/metabolismo , Eletrodos Implantados , Receptores de Lipopolissacarídeos/metabolismo , Microeletrodos , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Interfaces Cérebro-Computador , Quimera , Impedância Elétrica , Feminino , Humanos , Receptores de Lipopolissacarídeos/antagonistas & inibidores , Receptores de Lipopolissacarídeos/genética , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microglia/fisiologia , Neurônios/metabolismo , Silício/química
6.
J Immunol Sci ; 2(4): 15-21, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30854523

RESUMO

Intracortical microelectrodes are used both in basic research to increase our understanding of the nervous system and for rehabilitation purposes through brain-computer interfaces. Yet, challenges exist preventing the widespread clinical use of this technology. A prime challenge is with the neuroinflammatory response to intracortical microelectrodes. This mini-review details immunomodulatory strategies employed to decrease the inflammatory response to these devices. Over time, broad-spectrum anti-inflammatory approaches, such as dexamethasone and minocycline, evolved into more targeted treatments since the underlying biology of the neuroinflammation was elucidated. This review also presents studies which examine novel prospective targets for future immunomodulatory targeting.

7.
Int J Antimicrob Agents ; 41(5): 477-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23541304

RESUMO

Resveratrol, a polyphenolic phytoalexin, is produced by plants in response to infection and has antibacterial activity. Haemophilus ducreyi is a Gram-negative bacterium that is the causative agent of the sexually transmitted disease chancroid. This study employed minimum cidal concentration (MCC) assays to evaluate the potential of resveratrol as a microbicide against H. ducreyi. Five class I and four class II strains of H. ducreyi tested had MCCs ≤500 µg/mL. Resveratrol was also tested against Lactobacillus spp., part of the natural vaginal flora. Representative strains of Lactobacillus were co-cultured with H. ducreyi and 500 µg/mL resveratrol; in all cases, Lactobacillus was recovered in greater numbers than H. ducreyi. These results show that resveratrol is not only bacteriostatic but is bactericidal to H. ducreyi, confirming the compound's potential for use as a topical microbicide to prevent chancroid.


Assuntos
Antibacterianos/farmacologia , Haemophilus ducreyi/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Estilbenos/farmacologia , Humanos , Lactobacillus/efeitos dos fármacos , Resveratrol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...