Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 16142, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752232

RESUMO

Traumatic brain injury (TBI) results in activated microglia. Activated microglia can be measured in vivo by using positron emission topography (PET) ligand peripheral benzodiazepine receptor standardized uptake values (PBR28suv). Cell based therapies have utilized autologous bone marrow mononuclear cells (BMMNCs) to attenuate activated microglia after TBI. This study aims to utilize in vivo PBR28suv to assess the efficacy of BMMNCs therapy after TBI. Seventy-two hours after CCI injury, BMMNCs were harvested from the tibia and injected via tail-vein at 74 h after injury at a concentration of 2 million cells per kilogram of body weight. There were three groups of rats: Sham, CCI-alone and CCI-BMMNCs (AUTO). One hundred twenty days after injury, rodents were imaged with PBR28 and their cognitive behavior assessed utilizing the Morris Water Maze. Subsequent ex vivo analysis included brain volume and immunohistochemistry. BMMNCs therapy attenuated PBR28suv in comparison to CCI alone and it improved spatial learning as measured by the Morris Water Maze. Ex vivo analysis demonstrated preservation of brain volume, a decrease in amoeboid-shaped microglia in the dentate gyrus and an increase in the ratio of ramified to amoeboid microglia in the thalamus. PBR28suv is a viable option to measure efficacy of BMMNCs therapy after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Microglia , Animais , Ratos , Medula Óssea , Elétrons , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/terapia , Tomografia por Emissão de Pósitrons
2.
ASN Neuro ; 13: 17590914211014135, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33957800

RESUMO

Traumatic brain injury (TBI) is a chronic, life threatening injury for which few effective interventions are available. Evidence in animal models suggests un-checked immune activation may contribute to the pathophysiology. Changes in regional density of active brain microglia can be quantified in vivo with positron emission topography (PET) with the relatively selective radiotracer, peripheral benzodiazepine receptor 28 (11 C-PBR28). Phenotypic assessment (activated vs resting) can subsequently be assessed (ex vivo) using morphological techniques. To elucidate the mechanistic contribution of immune cells in due to TBI, we employed a hybrid approach involving both in vivo (11 C-PBR28 PET) and ex vivo (morphology) to elucidate the role of immune cells in a controlled cortical impact (CCI), a rodent model for TBI. Density of activated brain microglia/macrophages was quantified 120 hours after injury using the standardized uptake value (SUV) approach. Ex vivo morphological analysis from specific brain regions using IBA-1 antibodies differentiated ramified (resting) from amoeboid (activated) immune cells. Additional immunostaining of PBRs facilitated co-localization of PBRs with IBA-1 staining to further validate PET data. Injured animals displayed greater PBR28suv when compared to sham animals. Immunohistochemistry demonstrated elevated density of amoeboid microglia/macrophages in the ipsilateral dentate gyrus, corpus callosum, thalami and injury penumbra of injured animals compared to sham animals. PBR co-stained with amoeboid microglia/macrophages in the injury penumbra and not with astrocytes. These data suggest the technologies evaluated may serve as bio-signatures of neuroinflammation following severe brain injury in small animals, potentially enabling in vivo tracking of neuroinflammation following TBI and cellular-based therapies.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/metabolismo , Modelos Animais de Doenças , Tomografia por Emissão de Pósitrons/métodos , Pirimidinas/metabolismo , Receptores de GABA-A/metabolismo , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Roedores
3.
Expert Opin Ther Targets ; 25(5): 365-380, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34029505

RESUMO

INTRODUCTION: Microglia is the resident tissue macrophages of the central nervous system. Prolonged microglial activation often occurs after traumatic brain injury and is associated with deteriorating neurocognitive outcomes. Resolution of microglial activation is associated with limited tissue loss and improved neurocognitive outcomes. Limiting the prolonged pro-inflammatory response and the associated secondary tissue injury provides the rationale and scientific premise for considering microglia as a therapeutic target. AREAS COVERED: In this review, we discuss markers of microglial activation, such as immunophenotype and microglial response to injury, including cytokine/chemokine release, free radical formation, morphology, phagocytosis, and metabolic shifts. We compare the origin and role in neuroinflammation of microglia and monocytes/macrophages. We review potential therapeutic targets to shift microglial polarization. Finally, we review the effect of cell therapy on microglia. EXPERT OPINION: Dysregulated microglial activation after neurologic injury, such as traumatic brain injury, can worsen tissue damage and functional outcomes. There are potential targets in microglia to attenuate this activation, such as proteins and molecules that regulate microglia polarization. Cellular therapeutics that limit, but do not eliminate, the inflammatory response have improved outcomes in animal models by reducing pro-inflammatory microglial activation via secondary signaling. These findings have been replicated in early phase clinical trials.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Microglia/metabolismo , Animais , Lesões Encefálicas Traumáticas/fisiopatologia , Humanos , Inflamação/patologia , Inflamação/terapia , Macrófagos/metabolismo , Terapia de Alvo Molecular , Transdução de Sinais/fisiologia
5.
Regen Med ; 14(4): 295-307, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31074319

RESUMO

Aim: Traumatic brain injury is a complex condition consisting of a mechanical injury with neurovascular disruption and inflammation with limited clinical interventions available. A growing number of studies report systemic delivery of human umbilical cord blood (HUCB) as a therapy for neural injuries. Materials & methods: HUCB cells from five donors were tested to improve blood-brain barrier integrity in a traumatic brain injury rat model at a dose of 2.5 × 107 cells/kg at 24 or 72 h postinjury and for immunomodulatory activity in vitro. Results & Conclusion: We observed that cells delivered 72 h postinjury significantly restored blood-brain barrier integrity. HUCB cells reduced the amount of TNF-α and IFN-γ released by activated primary rat splenocytes, which correlated with the expression of COX2 and IDO1.


Assuntos
Lesões Encefálicas/terapia , Encéfalo/irrigação sanguínea , Sangue Fetal/transplante , Inflamação/terapia , Cordão Umbilical/citologia , Animais , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Lesões Encefálicas/complicações , Lesões Encefálicas/patologia , Extravasamento de Materiais Terapêuticos e Diagnósticos/patologia , Humanos , Imunomodulação , Inflamação/complicações , Inflamação/patologia , Masculino , Ratos Sprague-Dawley , Baço/patologia , Fator de Necrose Tumoral alfa/metabolismo
6.
J Neurosci Res ; 97(6): 698-707, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30746753

RESUMO

Traumatic brain injury (TBI) effects both the brain and the immune system. Circulating monocytes/macrophages (Mo /Ma ) after a TBI may play an important role in preserving the blood-brain barrier (BBB), reducing brain edema, and interacting with resident microglia. To elucidate the role of circulating Mo /Ma , we utilized a monocyte/macrophage depletion model in response to TBI in male rats. Clodronate liposomes (CL) were used to deplete circulating Mo /Ma . A controlled cortical impact (CCI) injury model was used to create a TBI. All animals received either CL or PBS liposomes (PL), 48 and 24 hr prior to the procedure, and were sacrificed 72 hr post-injury for analysis of BBB permeability, brain edema, whole blood (Mo /Ma and granulocytes), and/or microglial analysis. Animals undergoing Mo /Ma depletion with CL prior to CCI (CCI-CL) were found to have increased BBB permeability when compared to non-depleted CCI (CCI-PL) animals. At 72 hr following injury, Sham-CL maintained on average an 82% reduction in the whole blood monocytes when compared to Sham-PL (p < 0.001). Monocytes in the whole blood remained significantly lower in CCI-CL animals when compared to CCI-PL (p < 0.001). The number of granulocytes in the whole blood of CCI-CL animals was higher at 3 days when compared to CCI-PL (p < 0.022). Surprisingly, the depletion of Mo /Ma did not affect brain edema. However, the depletion of Mo /Ma did result in a significant decrease in microglia (CCI-CL vs. CCI-PL, p < 0.012). In conclusion, an intact Mo /Ma population is required to repair BBB integrity and microglial response following injury.


Assuntos
Barreira Hematoencefálica/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Animais , Permeabilidade Capilar , Modelos Animais de Doenças , Masculino , Microglia/metabolismo , Ratos Sprague-Dawley
7.
J Neuroinflammation ; 15(1): 84, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29548333

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a major cause of death and disability. TBI results in a prolonged secondary central neuro-inflammatory response. Previously, we have demonstrated that multiple doses (2 and 24 h after TBI) of multipotent adult progenitor cells (MAPC) delivered intravenously preserve the blood-brain barrier (BBB), improve spatial learning, and decrease activated microglia/macrophages in the dentate gyrus of the hippocampus. In order to determine if there is an optimum treatment window to preserve the BBB, improve cognitive behavior, and attenuate the activated microglia/macrophages, we administered MAPC at various clinically relevant intervals. METHODS: We administered two injections intravenously of MAPC treatment at hours 2 and 24 (2/24), 6 and 24 (6/24), 12 and 36 (12/36), or 36 and 72 (36/72) post cortical contusion injury (CCI) at a concentration of 10 million/kg. For BBB experiments, animals that received MAPC at 2/24, 6/24, and 12/36 were euthanized 72 h post injury. The 36/72 treated group was harvested at 96 h post injury. RESULTS: Administration of MAPC resulted in a significant decrease in BBB permeability when administered at 2/24 h after TBI only. For behavior experiments, animals were harvested post behavior paradigm. There was a significant improvement in spatial learning (120 days post injury) when compared to cortical contusion injury (CCI) in groups when MAPC was administered at or before 24 h. In addition, there was a significant decrease in activated microglia/macrophages in the dentate gyrus of hippocampus of the treated group (2/24) only when compared to CCI. CONCLUSIONS: Intravenous injections of MAPC at or before 24 h after CCI resulted in improvement of the BBB, improved cognitive behavior, and attenuated activated microglia/macrophages in the dentate gyrus.


Assuntos
Lesões Encefálicas Traumáticas/cirurgia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células-Tronco Multipotentes/fisiologia , Animais , Barreira Hematoencefálica/fisiopatologia , Proteínas de Ligação ao Cálcio/metabolismo , Permeabilidade Capilar/fisiologia , Citocinas/metabolismo , Modelos Animais de Doenças , Proteínas do Domínio Duplacortina , Injeções Intraventriculares , Masculino , Aprendizagem em Labirinto , Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Células-Tronco Multipotentes/transplante , Neuropeptídeos/metabolismo , Ratos , Tempo de Reação , Fatores de Tempo
8.
J Neurosci Res ; 95(1-2): 509-517, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-27870453

RESUMO

Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality for both males and females and is, thus, a major focus of current study. Although the overall death rate of TBI for males is roughly three times higher than that for females, males have been disproportionately represented in clinical and preclinical studies. Gender differences are known to exist in many neurologic disorders, such as multiple sclerosis and stroke, and differences appear to exist in TBI. Furthermore, it is known that microglia have sexually dimorphic roles in CNS development and other neurologic conditions; however, most animal studies of microglia and TBI have focused on male subjects. Microglia are a current target of many preclinical and clinical therapeutic trials for TBI. Understanding the relationship among sex, sex hormones, and microglia is critical to truly understanding the pathophysiology of TBI. However, the evidence for sex differences in TBI centers mainly on sex hormones, and evidenced-based conclusions are often contradictory. In an attempt to review the current literature, it is apparent that sex differences likely exist, but the contradictory nature and magnitude of such differences in the existing literature does not allow definite conclusions to be drawn, except that more investigation of this issue is necessary. © 2016 Wiley Periodicals, Inc.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Microglia/fisiologia , Caracteres Sexuais , Animais , Lesões Encefálicas Traumáticas/epidemiologia , Humanos
9.
Stem Cells Transl Med ; 2(12): 953-60, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24191266

RESUMO

We previously demonstrated that the intravenous delivery of multipotent adult progenitor cells (MAPCs) after traumatic brain injury (TBI) in rodents provides neuroprotection by preserving the blood-brain barrier and systemically attenuating inflammation in the acute time frame following cell treatment; however, the long-term behavioral and anti-inflammatory effects of MAPC administration after TBI have yet to be explored. We hypothesized that the intravenous injection of MAPCs after TBI attenuates the inflammatory response (as measured by microglial morphology) and improves performance at motor tasks and spatial learning (Morris water maze [MWM]). MAPCs were administered intravenously 2 and 24 hours after a cortical contusion injury (CCI). We tested four groups at 120 days after TBI: sham (uninjured), injured but not treated (CCI), and injured and treated with one of two concentrations of MAPCs, either 2 million cells per kilogram (CCI-2) or 10 million cells per kilogram (CCI-10). CCI-10 rats showed significant improvement in left hind limb deficit on the balance beam. On the fifth day of MWM trials, CCI-10 animals showed a significant decrease in both latency to platform and distance traveled compared with CCI. Probe trials revealed a significant decrease in proximity measure in CCI-10 compared with CCI, suggesting improved memory retrieval. Neuroinflammation was quantified by enumerating activated microglia in the ipsilateral hippocampus. We observed a significant decrease in the number of activated microglia in the dentate gyrus in CCI-10 compared with CCI. Our results demonstrate that intravenous MAPC treatment after TBI in a rodent model offers long-term improvements in spatial learning as well as attenuation of neuroinflammation.


Assuntos
Células-Tronco Adultas/transplante , Comportamento Animal , Lesões Encefálicas/cirurgia , Encéfalo/patologia , Ativação de Macrófagos , Macrófagos/patologia , Aprendizagem em Labirinto , Microglia/patologia , Células-Tronco Multipotentes/transplante , Comportamento Espacial , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Lesões Encefálicas/psicologia , Modelos Animais de Doenças , Encefalite/patologia , Encefalite/fisiopatologia , Encefalite/cirurgia , Injeções Intravenosas , Macrófagos/metabolismo , Masculino , Microglia/metabolismo , Atividade Motora , Ratos , Tempo de Reação , Recuperação de Função Fisiológica , Fatores de Tempo
10.
J Trauma Acute Care Surg ; 75(3): 410-6, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23928737

RESUMO

BACKGROUND: Autologous bone marrow-derived mononuclear cells (AMNCs) have shown therapeutic promise for central nervous system insults such as stroke and traumatic brain injury (TBI). We hypothesized that intravenous injection of AMNC provides neuroprotection, which leads to cognitive improvement after TBI. METHODS: A controlled cortical impact (CCI) rodent TBI model was used to examine blood-brain barrier (BBB) permeability, neuronal and glial apoptosis, as well as cognitive behavior. Two groups of rats underwent CCI with AMNC treatment (CCI-autologous) or without AMNC treatment (CCI-alone), consisting of 2 million AMNC per kilogram body weight harvested from the tibia and intravenously injected 72 hours after injury. CCI-alone animals underwent sham harvests and received vehicle injections. RESULTS: Ninety-six hours after injury, AMNC significantly reduced the BBB permeability in injured animals, and there was an increase in apoptosis of proinflammatory activated microglia in the ipsilateral hippocampus. At 4 weeks after injury, we observed significant improvement in probe testing of CCI-Autologous group in comparison to CCI-Alone in the Morris Water Maze paradigm. CONCLUSION: Our data demonstrate that the intravenous injection of AMNC after TBI leads to neuroprotection by preserving early BBB integrity, increasing activated microglial apoptosis and improving cognitive function.


Assuntos
Transplante de Medula Óssea/métodos , Lesões Encefálicas/cirurgia , Leucócitos Mononucleares/transplante , Macrófagos/fisiologia , Aprendizagem em Labirinto/fisiologia , Microglia/fisiologia , Animais , Apoptose/fisiologia , Barreira Hematoencefálica/fisiopatologia , Lesões Encefálicas/complicações , Lesões Encefálicas/fisiopatologia , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/prevenção & controle , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley
11.
J Neurosci Methods ; 219(1): 176-82, 2013 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-23928152

RESUMO

BACKGROUND: The inflammatory response after a CNS injury is regulated by microglia/macrophages. Changes in the ratio of M1 classically activated pro-inflammatory cells versus M2 alternatively activated anti-inflammatory cells reveal the direction of the immune response. These cells are routinely identified and enumerated by morphology and cell-surface markers using immunohistochemistry. NEW METHOD: We used a controlled cortical impact (CCI) mouse model for traumatic brain injury (TBI), then isolated microglia/macrophages from neural cell suspensions using magnetic beads conjugated to CD11b monoclonal antibody to obtain the entire myeloid population. Polarization states of CD11b(+)CD45(lo) microglia were evaluated by expression of M1 surface marker FcγRII/III and M2 surface marker CD206. RESULTS: After TBI, we observed an increase in M1:M2 ratio in the ipsilateral hemisphere when compared to the contralateral side, indicating that 24h after CCI, a shift in microglia polarization occurs localized to the hemisphere of injury. Comparison with existing method(s): The major impetus for developing and refining the methods was the need to accurately quantify microglial activation states without reliance on manual morphometric counting of serial immunohistochemistry slides. Flow cytometric analysis of enriched cell suspensions provides quantitative measurement of microglial polarization states complementary to existing methods, but for entire populations of cells. CONCLUSIONS: In summary, we used immunomagnetic beads to isolate myeloid cells from injured brain, then stained surface antigens to flow cytometrically identify and categorize microglia as either classically activated M1 or alternatively activated M2, generating a ratio of M1:M2 cells which is useful in studying attempts to reduce or redirect neuroinflammation.


Assuntos
Citometria de Fluxo/métodos , Separação Imunomagnética/métodos , Microglia/fisiologia , Animais , Encéfalo/patologia , Lesões Encefálicas/patologia , Antígeno CD11b/análise , Separação Celular , Interpretação Estatística de Dados , Corantes Fluorescentes , Imuno-Histoquímica , Antígenos Comuns de Leucócito/análise , Contagem de Leucócitos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
12.
J Neuroinflammation ; 9: 228, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23020860

RESUMO

INTRODUCTION: We have demonstrated previously that the intravenous delivery of multipotent adult progenitor cells (MAPC) after traumatic brain injury affords neuroprotection via interaction with splenocytes, leading to an increase in systemic anti-inflammatory cytokines. We hypothesize that the observed modulation of the systemic inflammatory milieu is related to T regulatory cells and a subsequent increase in the locoregional neuroprotective M2 macrophage population. METHODS: C57B6 mice were injected with intravenous MAPC 2 and 24 hours after controlled cortical impact injury. Animals were euthanized 24, 48, 72, and 120 hours after injury. In vivo, the proportion of CD4(+)/CD25(+)/FOXP3(+) T-regulatory cells were measured in the splenocyte population and plasma. In addition, the brain CD86(+) M1 and CD206(+) M2 macrophage populations were quantified. A series of in vitro co-cultures were completed to investigate the need for direct MAPC:splenocyte contact as well as the effect of MAPC therapy on M1 and M2 macrophage subtype apoptosis and proliferation. RESULTS: Significant increases in the splenocyte and plasma T regulatory cell populations were observed with MAPC therapy at 24 and 48 hours, respectively. In addition, MAPC therapy was associated with an increase in the brain M2/M1 macrophage ratio at 24, 48 and 120 hours after cortical injury. In vitro cultures of activated microglia with supernatant derived from MAPC:splenocyte co-cultures also demonstrated an increase in the M2/M1 ratio. The observed changes were secondary to an increase in M1 macrophage apoptosis. CONCLUSIONS: The data show that the intravenous delivery of MAPC after cortical injury results in increases in T regulatory cells in splenocytes and plasma with a concordant increase in the locoregional M2/M1 macrophage ratio. Direct contact between the MAPC and splenocytes is required to modulate activated microglia, adding further evidence to the central role of the spleen in MAPC-mediated neuroprotection.


Assuntos
Células-Tronco Adultas/transplante , Lesões Encefálicas/patologia , Lesões Encefálicas/terapia , Microglia/fisiologia , Células-Tronco Multipotentes/fisiologia , Administração Intravenosa , Células-Tronco Adultas/fisiologia , Análise de Variância , Animais , Antígenos CD/metabolismo , Barreira Hematoencefálica/fisiopatologia , Comunicação Celular/fisiologia , Proliferação de Células , Terapia Baseada em Transplante de Células e Tecidos , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Citometria de Fluxo , Fatores de Transcrição Forkhead/metabolismo , Humanos , Fígado/citologia , Linfócitos/metabolismo , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Multipotentes/transplante
13.
J Neurotrauma ; 29(5): 925-35, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-21939395

RESUMO

Although most investigations of the mechanisms underlying chronic pain after spinal cord injury (SCI) have examined the central nervous system (CNS), recent studies have shown that nociceptive primary afferent neurons display persistent hyperexcitability and spontaneous activity in their peripheral branches and somata in dorsal root ganglia (DRG) after SCI. This suggests that SCI-induced alterations of primary nociceptors contribute to central sensitization and chronic pain after SCI. Does SCI also promote growth of these neurons' fibers, as has been suggested in some reports? The present study tests the hypothesis that SCI induces an intrinsic growth-promoting state in DRG neurons. This was tested by dissociating DRG neurons 3 days or 1 month after spinal contusion injury at thoracic level T10 and measuring neuritic growth 1 day later. Neurons cultured 3 days after SCI exhibited longer neurites without increases in branching ("elongating growth"), compared to neurons from sham-treated or untreated (naïve) rats. Robust promotion of elongating growth was found in small and medium-sized neurons (but not large neurons) from lumbar (L3-L5) and thoracic ganglia immediately above (T9) and below (T10-T11) the contusion site, but not from cervical DRG. Elongating growth was also found in neurons immunoreactive to calcitonin gene-related peptide (CGRP), suggesting that some of the neurons exhibiting enhanced neuritic growth were nociceptors. The same measurements made on neurons dissociated 1 month after SCI revealed no evidence of elongating growth, although evidence for accelerated initiation of neurite outgrowth was found. Under certain conditions this transient growth-promoting state in nociceptors might be important for the development of chronic pain and hyperreflexia after SCI.


Assuntos
Gânglios Espinais/patologia , Neuralgia/patologia , Neurônios Aferentes/patologia , Nociceptores/patologia , Traumatismos da Medula Espinal/patologia , Animais , Sensibilização do Sistema Nervoso Central/fisiologia , Imuno-Histoquímica , Neuralgia/etiologia , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/complicações
14.
Transl Stroke Res ; 3(3): 318-23, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24323807

RESUMO

Traumatic brain injuries and their associated treatments carry high cost in both financial impact and morbidity to human life. Recent studies and trials present promising results in reducing secondary injury in the days and weeks following the primary insult. A number of studies, both pre-clinical and clinical, have found that different populations of stem/progenitor cells result in a reduction of inflammation, maintenance of the blood brain barrier, and an overall improved prognosis. The mechanism of action of these cellular therapies appears to rely upon the ability of the cells to influence microglia/macrophage phenotype and alter the state of the inflammatory response. The spleen has become an area of intense interest as an arena where therapeutic cells interact with reactive macrophages to cause system-level changes in immune activity. Additionally, the spleen enacts anti-inflammatory responses originating in the CNS, delivered through vagal activity with a recently described mechanism culminating in acetylcholine release. This review provides a summary of recent findings as to the mechanisms of action observed in current cellular therapies.

15.
J Neurosci ; 30(44): 14870-82, 2010 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-21048146

RESUMO

Mechanisms underlying chronic pain that develops after spinal cord injury (SCI) are incompletely understood. Most research on SCI pain mechanisms has focused on neuronal alterations within pain pathways at spinal and supraspinal levels associated with inflammation and glial activation. These events might also impact central processes of primary sensory neurons, triggering in nociceptors a hyperexcitable state and spontaneous activity (SA) that drive behavioral hypersensitivity and pain. SCI can sensitize peripheral fibers of nociceptors and promote peripheral SA, but whether these effects are driven by extrinsic alterations in surrounding tissue or are intrinsic to the nociceptor, and whether similar SA occurs in nociceptors in vivo are unknown. We show that small DRG neurons from rats (Rattus norvegicus) receiving thoracic spinal injury 3 d to 8 months earlier and recorded 1 d after dissociation exhibit an elevated incidence of SA coupled with soma hyperexcitability compared with untreated and sham-treated groups. SA incidence was greatest in lumbar DRG neurons (57%) and least in cervical neurons (28%), and failed to decline over 8 months. Many sampled SA neurons were capsaicin sensitive and/or bound the nociceptive marker, isolectin B4. This intrinsic SA state was correlated with increased behavioral responsiveness to mechanical and thermal stimulation of sites below and above the injury level. Recordings from C- and Aδ-fibers revealed SCI-induced SA generated in or near the somata of the neurons in vivo. SCI promotes the entry of primary nociceptors into a chronic hyperexcitable-SA state that may provide a useful therapeutic target in some forms of persistent pain.


Assuntos
Potenciais de Ação/fisiologia , Gânglios Espinais/fisiologia , Nociceptores/fisiologia , Dor/fisiopatologia , Células Receptoras Sensoriais/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Comportamento Animal/fisiologia , Células Cultivadas , Doença Crônica , Modelos Animais de Doenças , Feminino , Gânglios Espinais/citologia , Masculino , Nociceptores/citologia , Dor/etiologia , Medição da Dor/métodos , Estimulação Física/efeitos adversos , Estimulação Física/métodos , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/citologia , Traumatismos da Medula Espinal/complicações
16.
J Neurophysiol ; 100(6): 3209-24, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18842953

RESUMO

To facilitate an understanding of injury-induced changes within the nervous system, we used a single-cell, in vitro model of axonal injury. Sensory neurons were individually dissociated from the CNS of Aplysia and placed into cell culture. The major neurite of some neurons was then transected (axotomized neurons). Axotomy in hemolymph-containing culture medium produced long-term hyperexcitability (LTH-E) and enhanced neuritic sprouting (long-term hypermorphogenesis [LTH-M]). Axotomy in the absence of hemolymph induced LTH-E, but not LTH-M. Hemolymph-derived growth factors may activate tyrosine receptor kinase (Trk) receptors in sensory neurons. To examine this possibility, we treated uninjured (control) and axotomized sensory neurons with K252a, an inhibitor of Trk receptor activity. K252a depressed the excitability of both axotomized and control neurons. K252a also produced a distinct pattern of arborizing outgrowth of neurites in both axotomized and control neurons. Protein kinase C (PKC) is an intracellular signal downstream of Trk; accordingly, we tested the effects of bisindolylmaleimide I (Bis-I), a specific inhibitor of PKC, on the axotomy-induced cellular changes. Bis-I blocked LTH-E, but did not disrupt LTH-M. Finally, because Trk activates the extracellular signal regulated kinase pathway in Aplysia sensory neurons, we examined whether this pathway mediates the injury-induced changes. Sensory neurons were axotomized in the presence of U0126, an inhibitor of mitogen-activated/extracellular receptor-regulated kinase. U0126 blocked the LTH-M due to axotomy, but did not impair LTH-E. Therefore distinct cellular signaling pathways mediate the induction of LTH-E and LTH-M in the sensory neurons.


Assuntos
Potenciais de Ação/fisiologia , Aplysia/fisiologia , Gânglios dos Invertebrados/fisiologia , Células Receptoras Sensoriais/fisiologia , Transdução de Sinais/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Aplysia/anatomia & histologia , Axotomia/métodos , Tamanho Celular/efeitos dos fármacos , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Gânglios dos Invertebrados/citologia , Hemolinfa/fisiologia , Neuritos/efeitos dos fármacos , Neuritos/fisiologia , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...