Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Bot ; 111(4): e16306, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38557829

RESUMO

Decades of empirical research have revealed how the geological history of our planet shaped plant evolution by establishing well-known patterns (e.g., how mountain uplift resulted in high rates of diversification and replicate radiations in montane plant taxa). This follows a traditional approach where botanical data are interpreted in light of geological events. In this synthesis, I instead describe how by integrating natural history, phylogenetics, and population genetics, botanical research can be applied alongside geology and paleontology to inform our understanding of past geological and climatic processes. This conceptual shift aligns with the goals of the emerging field of geogenomics. In the neotropics, plant geogenomics is a powerful tool for the reciprocal exploration of two long standing questions in biology and geology: how the dynamic landscape of the region came to be and how it shaped the evolution of the richest flora. Current challenges that are specific to analytical approaches for plant geogenomics are discussed. I describe the scale at which various geological questions can be addressed from biological data and what makes some groups of plants excellent model systems for geogenomics research. Although plant geogenomics is discussed with reference to the neotropics, the recommendations given here for approaches to plant geogenomics can and should be expanded to exploring long-standing questions on how the earth evolved with the use of plant DNA.


Assuntos
Plantas , Plantas/genética , Genômica , Evolução Biológica , Filogenia , Botânica , Genoma de Planta , Geologia
2.
Syst Biol ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170162

RESUMO

The Andes mountains of western South America are a globally important biodiversity hotspot, yet there is a paucity of resolved phylogenies for plant clades from this region. Filling an important gap to our understanding of the World's richest flora, we present the first phylogeny of Freziera (Pentaphylacaceae), an Andean-centered, cloud forest radiation. Our dataset was obtained via yrid-enriched target sequence capture of Angiosperms353 universal loci for 50 of the ca. 75 spp., obtained almost entirely from herbarium specimens. We identify high phylogenomic complexity in Freziera, including the presence of data artifacts. Via by-eye observation of gene trees, detailed examination of warnings from recently improved assembly pipelines, and gene tree filtering, we identified that artifactual orthologs (i.e., the presence of only one copy of a multi-copy gene due to differential assembly) were an important source of gene tree heterogeneity that had a negative impact on phylogenetic inference and support. These artifactual orthologs may be common in plant phylogenomic datasets, where multiple instances of genome duplication are common. After accounting for artifactual orthologs as source of gene tree error, we identified a significant, but non-specific signal of introgression using Patterson's D and f4 statistics. Despite phylogenomic complexity, we were able to resolve Freziera into nine well-supported subclades whose evolution has been shaped by multiple evolutionary processes, including incomplete lineage sorting, historical gene flow, and gene duplication. Our results highlight the complexities of plant phylogenomics, which are heightened in Andean radiations, and show the impact of filtering data processing artifacts and standard filtering approaches on phylogenetic inference.

3.
Appl Plant Sci ; 11(6): e11554, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38106541

RESUMO

Premise: Rubiaceae is among the most species-rich plant families, as well as one of the most morphologically and geographically diverse. Currently available phylogenies have mostly relied on few genomic and plastid loci, as opposed to large-scale genomic data. Target enrichment provides the ability to generate sequence data for hundreds to thousands of phylogenetically informative, single-copy loci, which often leads to improved phylogenetic resolution at both shallow and deep taxonomic scales; however, a publicly accessible Rubiaceae-specific probe set that allows for comparable phylogenetic inference across clades is lacking. Methods: Here, we use publicly accessible genomic resources to identify putatively single-copy nuclear loci for target enrichment in two Rubiaceae groups: tribe Hillieae (Cinchonoideae) and tribal complex Palicoureeae+Psychotrieae (Rubioideae). We sequenced 2270 exonic regions corresponding to 1059 loci in our target clades and generated in silico target enrichment sequences for other Rubiaceae taxa using our designed probe set. To test the utility of our probe set for phylogenetic inference across Rubiaceae, we performed a coalescent-aware phylogenetic analysis using a subset of 27 Rubiaceae taxa from 10 different tribes and three subfamilies, and one outgroup in Apocynaceae. Results: We recovered an average of 75% and 84% of targeted exons and loci, respectively, per Rubiaceae sample. Probes designed using genomic resources from a particular subfamily were most efficient at targeting sequences from taxa in that subfamily. The number of paralogs recovered during assembly varied for each clade. Phylogenetic inference of Rubiaceae with our target regions resolves relationships at various scales. Relationships are largely consistent with previous studies of relationships in the family with high support (≥0.98 local posterior probability) at nearly all nodes and evidence of gene tree discordance. Discussion: Our probe set, which we call Rubiaceae2270x, was effective for targeting loci in species across and even outside of Rubiaceae. This probe set will facilitate phylogenomic studies in Rubiaceae and advance systematics and macroevolutionary studies in the family.

4.
Am J Bot ; 108(8): 1354-1373, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34418063

RESUMO

PREMISE: Lantana and Lippia (Verbenaceae) are two large Linnean genera whose classification has been based on associated fruit traits: fleshy vs. dry fruits and one vs. two seed-bearing units. We reconstruct evolutionary relationships and the evolution of the two fruit traits to test the validity of these traits for classification. METHODS: Previous studies of plastid DNA sequences provided limited resolution for this group. Consequently, seven nuclear loci, including ITS, ETS, and five PPR loci, were sequenced for 88 accessions of the Lantana/Lippia clade and three outgroups. RESULTS: Neither Lantana nor Lippia is monophyletic. Burroughsia, Nashia, Phyla, and several Aloysia species are included within the clade comprising Lantana and Lippia. We provide a hypothesis for fruit evolution and biogeographic history in the group and their relevance for classification. CONCLUSIONS: Fleshy fruits evolved multiple times in the Lantana/Lippia clade and thus are not suitable taxonomic characters. Several sections of Lantana and Lippia and the small genera are monophyletic, but Lippia section Zappania is broadly paraphyletic, making circumscription of genera difficult. Lippia sect. Rhodolippia is a polyphyletic group characterized by convergence in showy bracts. Species of Lantana sect. Sarcolippia, previously transferred to Lippia, are not monophyletic. The clade originated and diversified in South America, with at least four expansions into both Central America and the Caribbean and two to Africa. The types species of Lantana and Lippia occur in small sister clades, rendering any taxonomy that retains either genus similar to its current circumscription impossible.


Assuntos
Lantana , Lippia , Verbenaceae , Teorema de Bayes , Lippia/genética , Filogenia , Análise de Sequência de DNA , Verbenaceae/genética
5.
New Phytol ; 232(5): 2175-2190, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34318482

RESUMO

Northern South America is a geologically dynamic and species-rich region. Fossil and stratigraphic data show that mountain uplift in the tropical Andes reconfigured river drainages. These landscape changes shaped the evolution of the flora in the region, yet the impacts on aquatic taxa have been overlooked. We explore the role of landscape change on the evolution of plants living strictly in rivers across drainage basins in northern South America by conducting population structure, phylogenetic inference, and divergence-dating analyses for two species in the genus Marathrum (Podostemaceae). Mountain uplift and drainage basin formation isolated populations of M. utile and M. foeniculaceum in northern South America and created barriers to gene flow across river drainages. Sympatric species hybridize and the hybrids show the phenotype of one parental line. We propose that the pattern of divergence of populations reflects the formation of river drainages, which was not complete until < 4.1 million yr ago (Ma). Our study provides a clear picture of the role of landscape change on the evolution of plants living strictly in rivers in northern South America. By shifting the focus to aquatic taxa, we provide a novel perspective on the processes shaping the evolution of the Neotropical flora.


Assuntos
Ecossistema , Fósseis , Filogenia , Plantas/genética , América do Sul
6.
G3 (Bethesda) ; 11(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33693605

RESUMO

Spiny lizards in the genus Sceloporus are a model system among squamate reptiles for studies of chromosomal evolution. While most pleurodont iguanians retain an ancestral karyotype formula of 2n = 36 chromosomes, Sceloporus exhibits substantial karyotype variation ranging from 2n = 22 to 46 chromosomes. We present two annotated chromosome-scale genome assemblies for the Plateau Fence Lizard (Sceloporus tristichus) to facilitate research on the role of pericentric inversion polymorphisms on adaptation and speciation. Based on previous karyotype work using conventional staining, the S. tristichus genome is characterized as 2n = 22 with six pairs of macrochromosomes and five pairs of microchromosomes and a pericentric inversion polymorphism on chromosome 7 that is geographically variable. We provide annotated, chromosome-scale genomes for two lizards located at opposite ends of a dynamic hybrid zone that are each fixed for different inversion polymorphisms. The assembled genomes are 1.84-1.87 Gb (1.72 Gb for scaffolds mapping to chromosomes) with a scaffold N50 of 267.5 Mb. Functional annotation of the genomes resulted in ∼15K predicted gene models. Our assemblies confirmed the presence of a 4.62-Mb pericentric inversion on chromosome 7, which contains 62 annotated coding genes with known functions. In addition, we collected population genomics data using double digest RAD-sequencing for 44 S. tristichus to estimate population structure and phylogeny across the Colorado Plateau. These new genomic resources provide opportunities to perform genomic scans and investigate the formation and spread of pericentric inversions in a naturally occurring hybrid zone.


Assuntos
Lagartos , Animais , Inversão Cromossômica , Cromossomos , Genoma , Cariótipo , Cariotipagem , Lagartos/genética
8.
Front Plant Sci ; 10: 1035, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31481967

RESUMO

With the advent of next-generation sequencing technologies, whole-plastome data can be obtained as a byproduct of low-coverage sequencing of the plant genomic DNA. This provides an opportunity to study plastid evolution across groups, as well as testing phylogenetic relationships among taxa. Within the order Malpighiales (∼16,000 spp.), the Podostemaceae (∼300 spp.) stand out for their unique habit, living attached to rocks in fast-flowing aquatic habitats, and displaying highly modified morphologies that confound our understanding of their classification, biology, and evolution. In this study, we used genome skimming data to assemble the full plastid genome of 5 species within Podostemaceae. We analyzed our data in a comparative framework within Malpighiales to determine the structure, gene content, and rearrangements in the plastomes of the family. The Podostemaceae have one of the smallest plastid genomes reported so far for the Malpighiales, possibly due to variation in length of inverted repeat (IR) regions, gene loss, and intergenic region variation. We also detected a major inversion in the large single-copy region unique to the family. The uncommon loss or pseudogenization of ycf1 and ycf2 in angiosperms and in land plants in general is also found to be characteristic of Podostemaceae, but the compensatory mechanisms and implications of this and of the pseudogenization of accD, rpl22, and clpP and loss of rps16 remain to be explained in this group. In addition, we estimated a phylogenetic tree among selected species in Malpighiales. Our findings indicate that the Podostemaceae are a distinct lineage with long branches that suggest faster rates of evolution in the plastome of the group, compared with other taxa in the order. This study lays the foundations for future phylogenomic studies in the family.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...