Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neoplasia ; 36: 100870, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36599192

RESUMO

Central nervous system (CNS) tumors are the most common solid malignancy in the pediatric population. Based on adoptive cellular therapy's clinical success against childhood leukemia and the preclinical efficacy against pediatric CNS tumors, chimeric antigen receptor (CAR) T cells offer hope of improving outcomes for recurrent tumors and universally fatal diseases such as diffuse intrinsic pontine glioma (DIPG). However, a major obstacle for tumors of the brain and spine is ineffective T cell chemotaxis to disease sites. Locoregional CAR T cell delivery via infusion through an intracranial catheter is currently under study in multiple early phase clinical trials. Here, we describe the Seattle Children's single-institution experience including the multidisciplinary process for the preparation of successful, repetitive intracranial T cell infusion for children and the catheter-related safety of our 307 intracranial CAR T cell doses.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Criança , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Linfócitos T , Neoplasias Encefálicas/patologia , Neoplasias do Sistema Nervoso Central/terapia , Catéteres
2.
Cancer Immunol Res ; 10(7): 856-870, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35580141

RESUMO

T cells modified to express a chimeric antigen receptor (CAR) targeting CD19 can induce potent and sustained responses in children with relapsed/refractory acute lymphoblastic leukemia (ALL). The durability of remission is related to the length of time the CAR T cells persist. Efforts to understand differences in persistence have focused on the CAR construct, in particular the costimulatory signaling module of the chimeric receptor. We previously reported a robust intent-to-treat product manufacturing success rate and remission induction rate in children and young adults with recurrent/refractory B-ALL using the SCRI-CAR19v1 product, a second-generation CD19-specific CAR with 4-1BB costimulation coexpressed with the EGFRt cell-surface tag (NCT02028455). Following completion of the phase I study, two changes to CAR T-cell manufacturing were introduced: switching the T-cell activation reagent and omitting midculture EGFRt immunomagnetic selection. We tested the modified manufacturing process and resulting product, designated SCRI-CAR19v2, in a cohort of 21 subjects on the phase II arm of the trial. Here, we describe the unanticipated enhancement in product performance resulting in prolonged persistence and B-cell aplasia and improved leukemia-free survival with SCRI-CAR19v2 as compared with SCRI-CAR19v1.


Assuntos
Linfoma de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos Quiméricos , Antígenos CD19 , Criança , Ensaios Clínicos Fase I como Assunto , Humanos , Imunoterapia Adotiva/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Recidiva , Linfócitos T , Adulto Jovem
3.
Biol Blood Marrow Transplant ; 25(2): 223-232, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30315942

RESUMO

Cytotoxic chemotherapy and radiation can render lymphocyte repertoires qualitatively and quantitatively defective. Thus, heavily treated patients are often poor candidates for the manufacture of autologous chimeric antigen receptor (CAR)-T cell products. In the United States and Europe, children with high-risk neuroblastoma undergo apheresis early in the course of treatment to collect peripheral blood stem cells (PBSCs) for cryopreservation in preparation for high-dose chemotherapy followed by autologous stem cell rescue. Here, we investigate whether these cryopreserved chemotherapy and granulocyte colony-stimulating factor (G-CSF)-mobilized PBSCs can serve as starting material for CAR-T cell manufacturing. We evaluated T cell precursor subsets in cryopreserved PBSC units from 8 patients with neuroblastoma using fluorescent activated cell sorting-based analysis. Every cryopreserved unit collected early in treatment contained both CD4 and CD8 precursors with significant numbers of naïve and central memory precursors. Significant numbers of Ki67+/PD1+ T cells were detected, presumably the result of chemotherapy-induced lymphopenia and subsequent homeostatic proliferation. Cryopreserved PBSC units containing 56 to 112 × 106 T cells were amenable to immunomagnetic selection, CD3 × 28 bead activation, lentiviral transduction, and cytokine-driven expansion, provided that CD14 monocytes were depleted before the initiation of cultures. Second- and third-generation CD171 CAR+ CD4 and CD8 effector cells derived from cryopreserved units displayed antineuroblastoma lytic potency and cytokine secretion comparable to those derived from a healthy donor and mediated in vivo antitumor regression in NSG mice. We conclude that cryopreserved PBSCs procured via standard methods during early treatment can serve as an alternative starting source for CAR-T cell manufacturing, extending the options for heavily treated patients.


Assuntos
Transferência Adotiva , Criopreservação , Mobilização de Células-Tronco Hematopoéticas , Neuroblastoma , Células-Tronco de Sangue Periférico , Receptores de Antígenos Quiméricos/imunologia , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Neuroblastoma/imunologia , Neuroblastoma/patologia , Neuroblastoma/terapia , Células-Tronco de Sangue Periférico/imunologia , Células-Tronco de Sangue Periférico/patologia , Estudos Retrospectivos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...