Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Sensors (Basel) ; 23(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37112275

RESUMO

Atopic dermatitis (AD) is one of the most common skin disorders, affecting nearly one-fifth of children and adolescents worldwide, and currently, the only method of monitoring the condition is through an in-person visual examination by a clinician. This method of assessment poses an inherent risk of subjectivity and can be restrictive to patients who do not have access to or cannot visit hospitals. Advances in digital sensing technologies can serve as a foundation for the development of a new generation of e-health devices that provide accurate and empirical evaluation of the condition to patients worldwide. The goal of this review is to study the past, present, and future of AD monitoring. First, current medical practices such as biopsy, tape stripping and blood serum are discussed with their merits and demerits. Then, alternative digital methods of medical evaluation are highlighted with the focus on non-invasive monitoring using biomarkers of AD-TEWL, skin permittivity, elasticity, and pruritus. Finally, possible future technologies are showcased such as radio frequency reflectometry and optical spectroscopy along with a short discussion to provoke research into improving the current techniques and employing the new ones to develop an AD monitoring device, which could eventually facilitate medical diagnosis.


Assuntos
Dermatite Atópica , Criança , Adolescente , Humanos , Dermatite Atópica/diagnóstico , Perda Insensível de Água , Pele/patologia , Prurido/patologia , Biomarcadores
3.
IEEE Trans Biomed Eng ; 58(4): 927-34, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20977982

RESUMO

Sonoporation has been shown to have an important role in biotechnology for gene therapy and drug delivery. This paper presents a novel microfluidic sonoporation system that achieves high rates of cell transfection and cell viability by operating the sonoporation chamber at resonance. The paper presents a theoretical analysis of the resonant sonoporation chamber design, which achieves sonoporation by forming an ultrasonic standing wave across the chamber. A piezoelectric transducer (PZT 26) is used to generate the ultrasound and the different material thicknesses have been identified to give a chamber resonance at 980 kHz. The efficiency of the sonoporation system was determined experimentally under a range of sonoporation conditions and different exposures time (5, 10, 15, and 20 s, respectively) using HeLa cells and plasmid (peGFP-N1). The experimental results achieve a cell transfection efficiency of 68.9% (analysis of variance, ANOVA, p < 0.05) at the resonant frequency of 980 kHz at 100 V(p-p) (19.5 MPa) with a cell viability of 77% after 10 s of insonication.


Assuntos
Eletroporação/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Sonicação/instrumentação , Transfecção/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Células HeLa , Humanos
4.
Langmuir ; 26(22): 16980-5, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-20923228

RESUMO

High-quality films of bismuth antimony telluride were synthesized by electrodeposition from nitric acid electroplating baths. The influence of a surfactant, sodium ligninsulfonate, on the structure, morphology, stoichiometry, and homogeneity of the deposited films has been investigated. It was found that addition of this particular surfactant significantly improved the microstructural properties as well as homogeneity of the films with a significant improvement in the thermoelectric properties over those deposited in the absence of surfactant. A detailed microprobe analysis of the deposited films yielded a stoichiometric composition of Bi(0.35)Sb(1.33)Te(3) for the films electrodeposited in the absence of surfactant and a stoichiometry of Bi(0.32)Sb(1.33)Te(3) for films deposited in the presence of surfactant.

5.
Artigo em Inglês | MEDLINE | ID: mdl-20178908

RESUMO

The work describes an improved 2-D model for a thin annulus by using a modified assumption with regard to coupled vibration. With this approach, the impedance spectrum and displacements due to radial modes, both in radial and thickness direction of a thin ring, are obtained. Bending displacement is investigated by finite element analysis (FEA) and matches our model. The bending in the thickness direction is coupled to radial modes and shows several node circles in the high radial overtone frequency range. The model is validated by FEA with excellent agreement between the new theory and FEA results.

6.
Phys Chem Chem Phys ; 11(18): 3584-90, 2009 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19421565

RESUMO

High density p-type Bi0.5Sb1.5Te3 nanowire arrays are produced by a combination of electrodeposition and ion-track lithography technology. Initially, the electrodeposition of p-type Bi0.5Sb1.5Te3 films is investigated to find out the optimal conditions for the deposition of nanowires. Polyimide-based Kapton foils are chosen as a polymer for ion track irradiation and nanotemplating Bi0.5Sb1.5Te3 nanowires. The obtained nanowires have average diameters of 80 nm and lengths of 20 microm, which are equivalent to the pore size and thickness of Kapton foils. The nanowires exhibit a preferential orientation along the {110} plane with a composition of 11.26 at.% Bi, 26.23 at.% Sb, and 62.51 at.% Te. Temperature dependence studies of the electrical resistance show the semiconducting nature of the nanowires with a negative temperature coefficient of resistance and band gap energy of 0.089+/-0.006 eV.

7.
Int J Surg ; 5(6): 436-40, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18078684

RESUMO

The surgeon Ambroise Paré designed an anthropomorphic hand for wounded soldiers in the 16th century. Since that time, there have been advances in technology through the use of computer-aided design, modern materials, electronic controllers and sensors to realise artificial hands which have good functionality and reliability. Data from touch, object slip, finger position and temperature sensors, mounted in the fingers and on the palm, can be used in feedback loops to automatically hold objects. A study of the natural neuromuscular systems reveals a complexity which can only in part be realised today with technology. Highlights of the parallels and differences between natural and artificial hands are discussed with reference to the Southampton Hand. The anatomical structure of parts of the natural systems can be made artificially such as the antagonist muscles using tendons. Theses solutions look promising as they are based on the natural form but in practice lack the desired physical specification. However, concepts of the lower spinal loops can be mimicked in principle. Some future devices will require greater skills from the surgeon to create the interface between the natural system and an artificial device. Such developments may offer a more natural control with ease of use for the limb deficient person.


Assuntos
Membros Artificiais , Mãos , Sistema Nervoso , Desenho de Prótese , Humanos , Reconhecimento Automatizado de Padrão
8.
Artigo em Inglês | MEDLINE | ID: mdl-15742558

RESUMO

This paper details improvements of the d33 co-efficient for thick-film lead zirconate titanate (PZT) layers. In particular, the effect of blending ball and attritor milled powders has been investigated. Mathematical modeling of the film structure has produced initial experimental values for powder combination percentages. A range of paste formulations between 8:1 and 2:1 ball to attritor milled PZT powders by weight have been mixed into a screen-printable paste. Each paste contains 10% by weight of lead borosilicate glass and an appropriate quantity of solvent to formulate a screen printable thixotropic paste. A d33 of 63.5 pC/N was obtained with a combination of 4:1 ball milled to attritor milled powder by weight. The improved paste combines the high d33 values of ball and the consistency of attritor milled powder. The measured d33 coefficient was further improved to 131 pC/N by increasing the furnace firing profile to 1000 degrees C, increasing the poling temperature to 200 degrees C, and using gold cermet and polymer electrodes that avoid silver migration effects and repeated firing of the PZT film.

9.
Artigo em Inglês | MEDLINE | ID: mdl-11885673

RESUMO

This paper describes a new multi-degree-of-freedom (MDOF) ultrasonic motor that comprises few parts and is based on low-cost thick-film technology. Conventional ultrasonic motors using bulk lead zirconate titanate (PZT) or thin-film PZT layers are relatively expensive at the present time. Thick-film printed PZT technology provides the opportunity to reduce the costs of ultrasonic motors. To demonstrate the feasibility of this approach, an ultrasonic motor was fabricated from alumina using thick-film printed PZT actuators. The thick-film PZT and electrode layers were printed on a thin alumina plate, and a tiny cylinder was mounted at its center. This cylinder magnifies the lateral displacement of the stator, holds the spherical rotor, and transmits the driving force to the sphere. Three bending vibrations, B22, B30, B03, of the plate were applied to rotate the sphere. Sufficient displacements for rotating the sphere were obtained near the resonance of B22 by applying an excitation voltage of 200 V peak-to-peak via a three-phase drive circuit. Rotations in three orthogonal directions have been observed by controlling the phase of the driving signal to the PZT electrodes, and a MDOF ultrasonic motor was successfully realized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA