Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biofouling ; 40(1): 1-13, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38213232

RESUMO

Characterizing seasonal changes in diatom community profiles in coastal environments is scarce worldwide. Despite diatoms being prevalent in microfouling, their role in microbially influenced corrosion of metallic materials remains poorly understood. This study reports the effect of seasonal variations on the settlement of marine diatoms and corrosion of 316 L stainless steel surfaces exposed to Chilean coastal seawater. Electron microscopy imaging revealed a diverse assembly of diatoms, exhibiting pronounced differences at genus level between summer and winter seasons, with a significant delay in diatom settlement during winter. Electrochemical measurements indicated an active role of diatoms in increasing corrosion current during biofilm development. While the final diatom composition was similar irrespective of the season, the analyses of diatom assemblages over time differed, showing faster colonization when silicate and nitrate were available. This study lays the foundation for future research on the dominant season-specific genera of diatoms to unveil the microbial interactions that could contribute to corrosion and to evaluate their potential as bioindicators for alternative surveillance strategies.


Assuntos
Diatomáceas , Estações do Ano , Aço Inoxidável/química , Chile , Biofilmes
2.
Anal Chem ; 92(6): 4251-4258, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32083846

RESUMO

Infrared (IR) laser ablation-remote-electrospray ionization (LARESI) platform coupled to a tandem mass spectrometer (MS/MS) operated in selected reaction monitoring (SRM) or multiple reaction monitoring (MRM) modes was developed and employed for imaging of target metabolites in human kidney cancer tissue. SRM or MRM modes were employed to avoid artifacts that are present in full scan MS mode. Four tissue samples containing both cancerous and noncancerous regions, obtained from three patients with renal cell carcinoma (RCC), were imaged. Sixteen endogenous metabolites that were reported in the literature as varying in abundance between cancerous and noncancerous areas in various human tissues were selected for analysis. Target metabolites comprised ten amino acids, four nucleosides and nucleobases, lactate, and vitamin E. For comparison purposes, images of the same metabolites were obtained with ultraviolet (UV) desorption/ionization mass spectrometry imaging (UV-LDI-MSI) using monoisotopic silver-109 nanoparticle-enhanced target (109AgNPET) in full-scan MS mode. The acquired MS images revealed differences in abundances of selected metabolites between cancerous and noncancerous regions of the kidney tissue. Importantly, the two imaging methods offered similar results. This study demonstrates the applicability of the novel ambient LARESI SRM/MRM MSI method to both investigating and discovering cancer biomarkers in human tissue.


Assuntos
Aminoácidos/análise , Carcinoma de Células Renais/diagnóstico por imagem , Neoplasias Renais/diagnóstico por imagem , Ácido Láctico/análise , Nucleosídeos/análise , Imagem Óptica , Vitamina E/análise , Aminoácidos/metabolismo , Carcinoma de Células Renais/metabolismo , Humanos , Neoplasias Renais/metabolismo , Ácido Láctico/metabolismo , Lasers , Espectrometria de Massas , Nanopartículas Metálicas/química , Nucleosídeos/metabolismo , Prata/química , Propriedades de Superfície , Vitamina E/metabolismo
3.
Anal Bioanal Chem ; 410(16): 3859-3869, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29658093

RESUMO

Renal cell carcinoma (RCC) is the most prevalent and lethal malignancy of the kidney. Despite all the efforts made, no tissue biomarker is currently used in the clinical management of patients with kidney cancer. A search for possible biomarkers in urine for clear cell renal cell carcinoma (ccRCC) has been conducted. Non-targeted metabolomic analyses were performed on paired samples of surgically removed renal cancer and normal tissue, as well as on urine samples. Extracts were analyzed by liquid chromatography/high-resolution mass spectrometry (LC-HRMS). Hydroxybutyrylcarnitine, decanoylcarnitine, propanoylcarnitine, carnitine, dodecanoylcarnitine, and norepinephrine sulfate were found in much higher concentrations in both cancer tissues (compared with the paired normal tissue) and in urine of cancer patients (compared with control urine). In contrast, riboflavin and acetylaspartylglutamate (NAAG) were present at significantly higher concentrations both in normal kidney tissue as well as in urine samples of healthy persons. This preliminary study resulted in the identification of several compounds that may be considered potential clear cell renal carcinoma biomarkers. Graphical abstract PLS-DA plot based on LC-MS data for normal and cancer human tissue samples. The aim of this work was the identification of up- and downregulated compounds that could potentially serve as renal cancer biomarkers.


Assuntos
Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/urina , Neoplasias Renais/metabolismo , Neoplasias Renais/urina , Metabolômica/métodos , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/urina , Carcinoma de Células Renais/patologia , Cromatografia Líquida/métodos , Humanos , Rim/patologia , Neoplasias Renais/patologia , Pessoa de Meia-Idade , Espectrometria de Massas em Tandem/métodos
4.
Microb Pathog ; 112: 126-134, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28963010

RESUMO

The human microbiome consists of a multitude of bacterial genera and species which continuously interact with one another and their host establishing a metabolic equilibrium. The dysbiosis can lead to the development of pathology, such as inflammatory bowel diseases. Sulfide-producing prokaryotes, including sulphate-reducing bacteria (SRB) constituting different genera, including the Desulfovibrio, are commonly detected within the human microbiome recovered from fecal material or colonic biopsy samples. It has been proposed that SRB likely contribute to colonic pathology, for example ulcerative colitis (UC). The interaction of SRB with the human colon and intestinal epithelial cell lines has been investigated using Desulfovibrio indonesiensis as a model mono-culture and in a co-culture with E. coli isolate, and with SRB consortia from human biopsy samples. We find that D. indonesiensis, whether as a mono- or co-culture, was internalized and induced apoptosis in colon epithelial cells. This effect was enhanced in the presence of E. coli. The SRB combination obtained through enrichment of biopsies from UC patients induced apoptosis of a human intestinal epithelial cell line. This response was not observed in SRB enrichments from healthy (non-UC) controls. Importantly, apoptosis was detected in epithelial cells from UC patients and was not seen in epithelial cells of healthy donors. Furthermore, the antibody raised against exopolysaccharides (EPS) of D. indonesiensis cross reacted with the SRB population from UC patients but not with the SRB combination from non-UC controls. This study reinforces a correlation between the presence of sulphate-reducing bacteria and an inflammatory response in UC sufferers.


Assuntos
Apoptose/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Colite Ulcerativa/microbiologia , Células Epiteliais/metabolismo , Trato Gastrointestinal/metabolismo , Sulfatos/farmacologia , Biópsia , Linhagem Celular , Técnicas de Cocultura , Colo/patologia , Colonoscopia , Desulfovibrio/metabolismo , Células Epiteliais/patologia , Escherichia coli/isolamento & purificação , Escherichia coli/metabolismo , Fezes/microbiologia , Humanos , Doenças Inflamatórias Intestinais/microbiologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Reino Unido
5.
Curr Microbiol ; 74(7): 848-853, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28466090

RESUMO

Next Generation Sequencing (NGS), using the Illumina® metabarcoding system, showed differences between biofilm communities on three degraded siliceous stone church façades in central Rio de Janeiro. Two church biofilms (on granite and augen gneiss) were dominated by Actinobacteria; the third (granite), surrounded by trees and further from intense vehicular traffic, by Gammaproteobacteria. Yeast-like forms of Basidiomycetes and Ascomycetes were major fungi on all facades, but 22.8% of Operational Taxonomic Units could not be assigned to any fungal taxon after DNA amplification with ITS primers and analysis with the UNITE database, indicating the need for more fungal NGS studies. The pipeline used in analysis of the V4 region of rRNA bacterial gene sequences influenced the taxa detected, with two major classes and many genera identified only by the pipeline using the Greengenes, and not the Silva, database. Principal Components Analysis separated façade biofilms into the appropriate three groups and indicated greater dissimilarity of the tree-surrounded church biofilm from the others, confirmed by Jaccard Similarity coefficients, suggesting that local environment influences community composition more than stone type. NGS allows rapid and detailed analysis of microbiomes, but results must be carefully assessed and must not be used as the sole indication of community composition.


Assuntos
Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Sedimentos Geológicos/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Microbiota , Bactérias/classificação , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Biofilmes , Primers do DNA , Fungos/classificação , Fungos/genética , Fungos/fisiologia , Compostos de Silício/análise
6.
Front Microbiol ; 8: 99, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28197141

RESUMO

Corrosion processes in two North Sea oil production pipelines were studied by analyzing pig envelope samples via metagenomic and metabolomic techniques. Both production systems have similar physico-chemical properties and injection waters are treated with nitrate, but one pipeline experiences severe corrosion and the other does not. Early and late pigging material was collected to gain insight into the potential causes for differential corrosion rates. Metabolites were extracted and analyzed via ultra-high performance liquid chromatography/high-resolution mass spectrometry with electrospray ionization (ESI) in both positive and negative ion modes. Metabolites were analyzed by comparison with standards indicative of aerobic and anaerobic hydrocarbon metabolism and by comparison to predicted masses for KEGG metabolites. Microbial community structure was analyzed via 16S rRNA gene qPCR, sequencing of 16S PCR products, and MySeq Illumina shotgun sequencing of community DNA. Metagenomic data were used to reconstruct the full length 16S rRNA genes and genomes of dominant microorganisms. Sequence data were also interrogated via KEGG annotation and for the presence of genes related to terminal electron accepting (TEA) processes as well as aerobic and anaerobic hydrocarbon degradation. Significant and distinct differences were observed when comparing the 'high corrosion' (HC) and the 'low corrosion' (LC) pipeline systems, especially with respect to the TEA utilization potential. The HC samples were dominated by sulfate-reducing bacteria (SRB) and archaea known for their ability to utilize simple carbon substrates, whereas LC samples were dominated by pseudomonads with the genetic potential for denitrification and aerobic hydrocarbon degradation. The frequency of aerobic hydrocarbon degradation genes was low in the HC system, and anaerobic hydrocarbon degradation genes were not detected in either pipeline. This is in contrast with metabolite analysis, which demonstrated the presence of several succinic acids in HC samples that are diagnostic of anaerobic hydrocarbon metabolism. Identifiable aerobic metabolites were confined to the LC samples, consistent with the metagenomic data. Overall, these data suggest that corrosion management might benefit from a more refined understanding of microbial community resilience in the face of disturbances such as nitrate treatment or pigging, which frequently prove insufficient to alter community structure toward a stable, less-corrosive assemblage.

7.
Biofouling ; 33(2): 113-127, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28054493

RESUMO

Weathering of two church facades in Rio de Janeiro was caused substantially by salts, mainly halite and gypsum, detected by SEM and chemical analyses, which cause physical stresses by deposition within the rock. Biofilm populations, determined by SEM and as operational taxonomic units (OTUs), degraded stone by penetration, solubilization and redeposition of minerals on their surfaces. Endolithic cyanobacteria were associated with gypsum deposits. Microbiomes were typical for high-stress environments, high salt, intense insolation, low water and low nutrients (eg halophilic Rubrobacter, Salinicola, Sterigmatomyces). The main colonizers on the church most affected by traffic (Nossa Senhora da Candelária - CA) were Actinobacteria; Gammaproteobacteria (chiefly Pseudomonas) were predominant on the site situated in a leafy square (São Francisco de Paula - SF). Major Gammaproteobacteria on CA were halophilic Halomonas and Rhodobacteriaceae. Fungal OTUs on both churches were principally dimorphic, yeast-like basidiomycetes. Many OTUs of thermophilic microorganisms (eg the Thermomicrobia class, Chloroflexi) were present. This is the first use of next generation sequencing (NGS) to study microbial biofilm interactions with metamorphic and granite buildings in an intensely urban, sub-tropical climate.


Assuntos
Basidiomycota/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Materiais de Construção/microbiologia , Cianobactérias/crescimento & desenvolvimento , Poluentes Ambientais/análise , Clima Tropical , Actinobacteria/crescimento & desenvolvimento , Actinobacteria/isolamento & purificação , Actinobacteria/fisiologia , Arquitetura , Basidiomycota/isolamento & purificação , Basidiomycota/fisiologia , Brasil , Cidades , Cianobactérias/isolamento & purificação , Cianobactérias/fisiologia , Gammaproteobacteria/crescimento & desenvolvimento , Gammaproteobacteria/isolamento & purificação , Gammaproteobacteria/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Urbanização
8.
J Ind Microbiol Biotechnol ; 44(2): 167-180, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28013395

RESUMO

Navy vessels consist of various metal alloys and biofilm accumulation at the metal surface is thought to play a role in influencing metal deterioration. To develop better strategies to monitor and control metallic biofilms, it is necessary to resolve the bacterial composition within the biofilm. This study aimed to determine if differences in electrochemical current could influence the composition of dominant bacteria in a metallic biofilm, and if so, determine the level of resolution using metagenomic amplicon sequencing. Current was generated by creating galvanic couples between cathodes made from stainless steel and anodes made from carbon steel, aluminum, or copper nickel and exposing them in the Delaware Bay. Stainless steel cathodes (SSCs) coupled to aluminum or carbon steel generated a higher mean current (0.39 mA) than that coupled to copper nickel (0.17 mA). Following 3 months of exposure, the bacterial composition of biofilms collected from the SSCs was determined and compared. Dominant bacterial taxa from the two higher current SSCs were different from that of the low-current SSC as determined by DGGE and verified by Illumina DNA-seq analysis. These results demonstrate that electrochemical current could influence the composition of dominant bacteria in metallic biofilms and that amplicon sequencing is sufficient to complement current methods used to study metallic biofilms in marine environments.


Assuntos
Bactérias/isolamento & purificação , Biofilmes , Eletrodos/microbiologia , Água do Mar/microbiologia , Aço Inoxidável , Alumínio/química , Bactérias/classificação , Carbono/química , Clonagem Molecular , Cobre/química , DNA Bacteriano/isolamento & purificação , Biblioteca Gênica , Níquel/química , RNA Ribossômico 16S/isolamento & purificação , Análise de Sequência de DNA
9.
Front Microbiol ; 8: 2448, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29321766

RESUMO

The aim of the study was to explore the halophile metabolome in building materials using untargeted metabolomics which allows for broad metabolome coverage. For this reason, we used high-performance liquid chromatography interfaced to high-resolution mass spectrometry (HPLC/HRMS). As an alternative to standard microscopy techniques, we introduced pioneering Coherent Anti-stokes Raman Scattering Microscopy (CARS) to non-invasively visualize microbial cells. Brick samples saturated with salt solution (KCl, NaCl (two salinity levels), MgSO4, Mg(NO3)2), were inoculated with the mixture of preselected halophilic microorganisms, i.e., bacteria: Halobacillus styriensis, Halobacillus naozhouensis, Halobacillus hunanensis, Staphylococcus succinus, Marinococcus halophilus, Virgibacillus halodenitryficans, and yeast: Sterigmatomyces halophilus and stored at 28°C and 80% relative humidity for a year. Metabolites were extracted directly from the brick samples and measured via HPLC/HRMS in both positive and negative ion modes. Overall, untargeted metabolomics allowed for discovering the interactions of halophilic microorganisms with buildings materials which together with CARS microscopy enabled us to elucidate the biodeterioration process caused by halophiles. We observed that halophile metabolome was differently affected by different salt solutions. Furthermore, we found indications for haloadaptive strategies and degradation of brick samples due to microbial pigment production as a salt stress response. Finally, we detected changes in lipid content related to changes in the structure of phospholipid bilayers and membrane fluidity.

10.
Mar Environ Res ; 122: 105-112, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27742449

RESUMO

16S rRNA gene profiling using a pipeline involving the Greengenes database revealed that bacterial populations in innermost (proximal to the steel surface) and outer regions of biofilms on carbon steel exposed 3 m below the surface at an offshore site in the Gulf of Guinea differed from one another and from seawater. There was a preponderance of gammaproteobacterial sequences, representing organisms known for hydrocarbon degradation. Total DNA from the innermost layer was 1500 times that recovered from the outermost. Stramenopiles (diatom) sequences were prevalent in the former. Rhodobacteriaceae, key biofilm formers, comprised 14.9% and 4.22% OTUs of inner and outer layers, respectively. Photosynthetic anaerobic sulfur oxidizer sequences were also prominent in the biofilms. Analysis of data using a different pipeline with Silva111 allowed detection of 0.3-0.4% SRB in the biofilms. The high abundance of aerobic micro-algal sequences in inner biofilm suggests they are initial colonizers of carbon steel surfaces in a marine environment. This is the first time that the microbial population of the strongly attached inner layer of the biofilm on steel has been differentiated from the outer, readily removed layer. The accepted scraping removal method is obviously inadequate and the resulting microbial analysis does not offer complete information on the biofilm community structure.


Assuntos
Bactérias/genética , Biofilmes/classificação , Monitoramento Ambiental/métodos , Plâncton/genética , Água do Mar/microbiologia , Bactérias/classificação , Biodiversidade , Guiné , Plâncton/classificação , RNA Ribossômico 16S
11.
Anal Chem ; 88(14): 7365-71, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27329270

RESUMO

Renal cell carcinoma (RCC) accounts for several percent of all adult malignant tumor cases and is directly associated with over 120 thousand death cases worldwide annually. Therefore, there is a need for cancer biomarker tests and methods capable of discriminating between normal and malignant tissue. It is demonstrated that gold nanoparticle enhanced target (AuNPET), a nanoparticle-based, surface-assisted laser desorption/ionization (SALDI)-type mass spectrometric method for analysis and imaging, can differentiate between normal and cancerous renal tissue. Diglyceride DG(18:1/20:0)-sodium adduct and protonated octadecanamide ions were found to have greatly elevated intensities in cancerous part of analyzed tissue specimen. Compounds responsible for mentioned ions formation were pointed out as a potential clear cell RCC biomarkers. Their biological properties and localization on the tissue surface are also discussed. Potential application of presented results may also facilitate clinical decision making during surgery for large renal masses.


Assuntos
Carcinoma de Células Renais/diagnóstico , Ouro/química , Neoplasias Renais/diagnóstico , Rim/química , Nanopartículas Metálicas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Alcanos/química , Amidas/química , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/química , Carcinoma de Células Renais/química , Carcinoma de Células Renais/diagnóstico por imagem , Diglicerídeos/química , Humanos , Rim/diagnóstico por imagem , Rim/patologia , Neoplasias Renais/química , Neoplasias Renais/diagnóstico por imagem , Sódio/química
12.
Materials (Basel) ; 9(8)2016 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-28773758

RESUMO

Biofouling often occurs in cooling water systems, resulting in the reduction of heat exchange efficiency and corrosion of the cooling pipes, which raises the running costs. Therefore, controlling biofouling is very important. To regulate biofouling, we focus on the formation of biofilm, which is the early step of biofouling. In this study, we investigated whether silver or copper nanoparticles-dispersed silane coatings inhibited biofilm formation in cooling systems. We developed a closed laboratory biofilm reactor as a model of a cooling pipe and used seawater as a model for cooling water. Silver or copper nanoparticles-dispersed silane coating (Ag coating and Cu coating) coupons were soaked in seawater, and the seawater was circulated in the laboratory biofilm reactor for several days to create biofilms. Three-dimensional images of the surface showed that sea-island-like structures were formed on silane coatings and low concentration Cu coating, whereas nothing was formed on high concentration Cu coatings and low concentration Ag coating. The sea-island-like structures were analyzed by Raman spectroscopy to estimate the components of the biofilm. We found that both the Cu coating and Ag coating were effective methods to inhibit biofilm formation in cooling pipes.

13.
Front Microbiol ; 6: 979, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26483760

RESUMO

Preservation of cultural heritage is of paramount importance worldwide. Microbial colonization of construction materials, such as wood, brick, mortar, and stone in historic buildings can lead to severe deterioration. The aim of the present study was to give modern insight into the phylogenetic diversity and activated metabolic pathways of microbial communities colonized historic objects located in the former Auschwitz II-Birkenau concentration and extermination camp in Oswiecim, Poland. For this purpose we combined molecular, microscopic and chemical methods. Selected specimens were examined using Field Emission Scanning Electron Microscopy (FESEM), metabolomic analysis and high-throughput Illumina sequencing. FESEM imaging revealed the presence of complex microbial communities comprising diatoms, fungi and bacteria, mainly cyanobacteria and actinobacteria, on sample surfaces. Microbial diversity of brick specimens appeared higher than that of the wood and was dominated by algae and cyanobacteria, while wood was mainly colonized by fungi. DNA sequences documented the presence of 15 bacterial phyla representing 99 genera including Halomonas, Halorhodospira, Salinisphaera, Salinibacterium, Rubrobacter, Streptomyces, Arthrobacter and nine fungal classes represented by 113 genera including Cladosporium, Acremonium, Alternaria, Engyodontium, Penicillium, Rhizopus, and Aureobasidium. Most of the identified sequences were characteristic of organisms implicated in deterioration of wood and brick. Metabolomic data indicated the activation of numerous metabolic pathways, including those regulating the production of primary and secondary metabolites, for example, metabolites associated with the production of antibiotics, organic acids and deterioration of organic compounds. The study demonstrated that a combination of electron microscopy imaging with metabolomic and genomic techniques allows to link the phylogenetic information and metabolic profiles of microbial communities and to shed new light on biodeterioration processes.

14.
J Am Soc Mass Spectrom ; 26(9): 1538-47, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26122514

RESUMO

A novel interface for ambient, laser ablation-based mass spectrometric imaging (MSI) referred to as laser ablation and solvent capture by aspiration (LASCA) is presented and its performance demonstrated using selected, unaltered biological materials. LASCA employs a pulsed 2.94 µm laser beam for specimen ablation. Ablated materials in the laser plumes are collected on a hanging solvent droplet with electric field-enhanced trapping, followed by aspiration of droplets and remaining plume material in the form of a coarse aerosol into a collection capillary. The gas and liquid phases are subsequently separated in a 10 µL-volume separatory funnel, and the solution is analyzed with electrospray ionization in a high mass resolution Q-ToF mass spectrometer. The LASCA system separates the sampling and ionization steps in MSI and combines high efficiencies of laser plume sampling and of electrospray ionization (ESI) with high mass resolution MS. Up to 2000 different compounds are detected from a single ablation spot (pixel). Using the LASCA platform, rapid (6 s per pixel), high sensitivity, high mass-resolution ambient imaging of "as-received" biological material is achieved routinely and reproducibly.

15.
Biointerphases ; 10(1): 019003, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25708633

RESUMO

Ambient laser ablation and solvent capture by aspiration (LASCA) mass spectrometric imaging was combined with metabolomics high-performance liquid chromatography (HPLC) mass spectrometry analysis and light profilometry to investigate the correlation between chemical composition of marine bacterial biofilms on surfaces of 1018 carbon steel and corrosion damage of steel underneath the biofilms. Pure cultures of Marinobacter sp. or a wild population of bacteria present in coastal seawater served as sources of biofilms. Profilometry data of biofilm-free surfaces demonstrated heterogeneous distributions of corrosion damage. LASCA data were correlated with areas on the coupons varying in the level of corrosion attack, to reveal differences in chemical composition within biofilm regions associated with corroding and corrosion-free zones. Putative identification of selected compounds was carried out based on HPLC results and subsequent database searches. This is the first report of successful ambient chemical and metabolomic imaging of marine biofilms on corroding metallic materials. The metabolic analysis of such biofilms is challenging due to the presence in the biofilm of large amounts of corrosion products. However, by using the LASCA imaging interface, images of more than 1000 ions (potential metabolites) are generated, revealing striking heterogeneities within the biofilm. In the two model systems studied here, it is found that some of the patterns observed in selected ion images closely correlate with the occurrence and extent of corrosion in the carbon steel substrate as revealed by profilometry, while others do not. This approach toward the study of microbially influenced corrosion (MIC) holds great promise for approaching a fundamental understanding of the mechanisms involved in MIC.


Assuntos
Bactérias/química , Bactérias/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Corrosão , Microbiologia Ambiental , Metaboloma , Aço , Bactérias/metabolismo , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Imagem Óptica
16.
Biofouling ; 30(7): 823-35, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25115517

RESUMO

Microbially influenced corrosion (MIC) has long been implicated in the deterioration of carbon steel in oil and gas pipeline systems. The authors sought to identify and characterize sessile biofilm communities within a high-temperature oil production pipeline, and to compare the profiles of the biofilm community with those of the previously analyzed planktonic communities. Eubacterial and archaeal 16S rRNA sequences of DNA recovered from extracted pipeline pieces, termed 'cookies,' revealed the presence of thermophilic sulfidogenic anaerobes, as well as mesophilic aerobes. Electron microscopy and elemental analysis of cookies confirmed the presence of sessile cells and chemical constituents consistent with corrosive biofilms. Mass spectrometry of cookie acid washes identified putative hydrocarbon metabolites, while surface profiling revealed pitting and general corrosion damage. The results suggest that in an established closed system, the biofilm taxa are representative of the planktonic eubacterial and archaeal community, and that sampling and monitoring of the planktonic bacterial population can offer insight into biocorrosion activity. Additionally, hydrocarbon biodegradation is likely to sustain these communities. The importance of appropriate sample handling and storage procedures to oilfield MIC diagnostics is highlighted.


Assuntos
Archaea/fisiologia , Fenômenos Fisiológicos Bacterianos , Biofilmes/classificação , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Corrosão , DNA Bacteriano/genética , Indústrias Extrativas e de Processamento , RNA Ribossômico 16S/genética , Aço/química
17.
Bioelectrochemistry ; 97: 2-6, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24411305

RESUMO

The present paper reports the on-line monitoring of corrosion behavior of the CuNi 70:30 and Al brass alloys exposed to seawater and complementary offline microbiological analyses. An electrochemical equipment with sensors specifically set for industrial application and suitable to estimate the corrosion (by linear polarization resistance technique), the biofilm growth (by the BIOX electrochemical probe), the chlorination treatment and other physical-chemical parameters of the water has been used for the on-line monitoring. In order to identify and better characterize the bacteria community present on copper alloys, tube samples were collected after a long period (1year) and short period (2days) of exposition to treated natural seawater (TNSW) and natural seawater (NSW). From the collected samples, molecular techniques such as DNA extraction, polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE) and identification by sequencing were performed to better characterize and identify the microbial biodiversity present in the samples. The monitoring data confirmed the significant role played by biofouling deposition against the passivity of these Cu alloys in seawater and the positive influence of antifouling treatments based on low level dosages. Molecular analysis indicated biodiversity with the presence of Marinobacter, Alteromonas and Pseudomonas species.


Assuntos
Ligas/química , Alumínio/química , Biofilmes/crescimento & desenvolvimento , Cobre/química , Corrosão , Níquel/química , Água do Mar/microbiologia , Alteromonas/fisiologia , Eletroforese , Halogenação , Manufaturas/análise , Manufaturas/microbiologia , Marinobacter/fisiologia , Pseudomonas/fisiologia , Água do Mar/análise
18.
Bioelectrochemistry ; 97: 97-109, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24355513

RESUMO

Present in all environments, microorganisms develop biofilms adjacent to the metallic structures creating corrosion conditions which may cause production failures that are of great economic impact to the industry. The most common practice in the oil and gas industry to annihilate these biofilms is the mechanical cleaning known as "pigging". In the present work, microorganisms from the "pigging" operation debris are tested biologically and electrochemically to analyse their effect on the corrosion of carbon steel. Results in the presence of bacteria display the formation of black corrosion products allegedly FeS and a sudden increase (more than 400mV) of the corrosion potential of electrode immersed in artificial seawater or in field water (produced water mixed with aquifer seawater). Impedance tests provided information about the mechanisms of the interface carbon steel/bacteria depending on the medium used: mass transfer limitation in artificial seawater was observed whereas that in field water was only charge transfer phenomenon. Denaturing Gradient Gel Electrophoresis (DGGE) results proved that bacterial diversity decreased when cultivating the debris in the media used and suggested that the bacteria involved in the whole set of results are mainly sulphate reducing bacteria (SRB) and some other bacteria that make part of the taxonomic order Clostridiales.


Assuntos
Carbono/química , Corrosão , Água do Mar/microbiologia , Aço/química , Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Biofilmes/crescimento & desenvolvimento , Eletroforese em Gel de Gradiente Desnaturante , Espectroscopia Dielétrica
19.
Bioelectrochemistry ; 97: 76-88, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24169516

RESUMO

Influence of sulfidogenic bacteria, from a North Sea seawater injection system, on the corrosion of S235JR carbon steel was studied in a flow bioreactor; operating anaerobically for 100days with either inoculated or filtrated seawater. Deposits formed on steel placed in reactors contained magnesium and calcium minerals plus iron sulfide. The dominant biofilm-forming organism was an anaerobic bacterium, genus Caminicella, known to produce hydrogen sulfide and carbon dioxide. Open Circuit Potentials (OCP) of steel in the reactors was, for nearly the entire test duration, in the range -80045), suggested pitting on steel samples within the inoculated environment. However, the actual degree of corrosion could neither be directly correlated with the electrochemical data and nor with the steel corrosion in the filtrated seawater environment. Further laboratory tests are thought to clarify the noticed apparent discrepancies.


Assuntos
Biofilmes/crescimento & desenvolvimento , Carbono/química , Corrosão , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/fisiologia , Água do Mar/microbiologia , Aço/química , Reatores Biológicos , Desenho de Equipamento , Mar do Norte , Sulfetos/metabolismo
20.
Rapid Commun Mass Spectrom ; 27(13): 1567-72, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23722691

RESUMO

RATIONALE: Ambient imaging mass spectrometry methods are critically dependent on the ability to efficiently collect all substances from a well-defined area of the sample. Improvements in this area are critical and enabling. METHODS: Methods for the efficient collection of laser-ablated materials directly into a solvent, for immediate transport to an ion source, have been explored using the application of electric fields. RESULTS: Electric-field-enhanced collection of laser-ablated materials has been demonstrated. Demonstrated increases in collection efficiency are as large as two orders of magnitude, in particular for hydrated biological materials, such as living bacterial colonies. This was achieved by applying approximately 1 kV between the sample and the receiving solvent surface. CONCLUSIONS: Electric-field-enhanced collection of laser-ablated materials holds great promise for ambient sampling and imaging mass spectrometry with rapid and direct interfacing to ionization sources, such as electrospray.


Assuntos
Terapia a Laser/métodos , Serratia/química , Terapia a Laser/instrumentação , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...