Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biosci Biotechnol Biochem ; 85(4): 962-971, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33580694

RESUMO

Thermal stability (D-value and pasteurization) and gastric acid resistance of spore forming and nonspore forming probiotic strains were evaluated in this study. Bacillus coagulans MTCC 5856 spores showed highest thermal resistance (D-value 35.71 at 90 °C) when compared with other Bacillus strains and Lactobacillus species. B. coagulans strains exhibited significantly higher resistance to simulated gastric juice (pH 1.3, 1.5, and 2.0) compared to Lactobacillus strains. It also showed high resistance to cooking conditions of chapati (whole wheat flour-based flatbread) (88.94% viability) and wheat noodles (and 94.56% viability), suggesting remarkable thermal resistance during food processing. Furthermore, B. coagulans MTCC 5856 retained 73% viability after microwave cooking conditions (300 s, at 260 °C) and 98.52% in milk and juice at pasteurization temperature (420 min, at 72 °C). Thus, B. coagulans MTCC 5856 clearly demonstrated excellent resistance to gastric acid and high temperature (90 °C), thereby suggesting its extended application in functional foods (milk, fruit juices, chapati, and wheat noodles) wherein high temperature processing is involved.


Assuntos
Bacillus coagulans/metabolismo , Trato Gastrointestinal/microbiologia , Probióticos , Esporos Bacterianos/crescimento & desenvolvimento , Temperatura
2.
J Sci Food Agric ; 100(2): 509-516, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31487036

RESUMO

BACKGROUND: Emblica officinalis, known as amla in Ayurveda, has been used as a folk medicine to treat numerous pathological conditions, including diabetes. However, the novel extract of E. officinalis fruit extract (amla fruit extract, AFE, Saberry®) containing 100 g kg-1 ß-glucogallin along with hydrolyzable tannins has not yet been extensively studied for its antidiabetic potential. OBJECTIVE: The aim of this study was to investigate the antidiabetic and antioxidant activities of AFE and its stability during gastric stress as well as its thermostability. METHODS: The effect of AFE on the inhibition of pancreatic α-amylase and salivary α-amylase enzymes was studied using starch and yeast α-glucosidase enzyme using 4-nitrophenyl α-d-glucopyranoside as substrate. Further, 2,2-diphenyl-1-picrylhydrazyl radical scavenging and reactive oxygen species inhibition assay was performed against AFE. RESULTS: AFE potently inhibited the activities of α-amylase and α-glucosidase in a concentration-dependent manner with half maximal inhibitory concentration (IC50 ) values of 135.70 µg mL-1 and 106.70 µg mL-1 respectively. Furthermore, it also showed inhibition of α-glucosidase (IC50 562.9 µg mL-1 ) and dipeptidyl peptidase-4 (DPP-4; IC50 3770 µg mL-1 ) enzyme activities. AFE is a potent antioxidant showing a free radical scavenging activity (IC50 2.37 µg mL-1 ) and protecting against cellular reactive oxygen species (IC50 1.77 µg mL-1 ), and the effects elicited could be attributed to its phytoconstituents. CONCLUSION: AFE showed significant gastric acid resistance and was also found to be thermostable against wet heat. Excellent α-amylase, α-glucosidase, and DPP-4 inhibitory activities of AFE, as well as antioxidant activities, strongly recommend its use for the management of type 2 diabetes mellitus. © 2019 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Antioxidantes/química , Inibidores da Dipeptidil Peptidase IV/química , Frutas/química , Inibidores de Glicosídeo Hidrolases/química , Phyllanthus emblica/química , Extratos Vegetais/química , Antioxidantes/isolamento & purificação , Diabetes Mellitus Tipo 2/enzimologia , Dipeptidil Peptidase 4/química , Inibidores da Dipeptidil Peptidase IV/isolamento & purificação , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Extratos Vegetais/isolamento & purificação , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/química , alfa-Glucosidases/química
3.
AMB Express ; 9(1): 79, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31144200

RESUMO

Calebin-A is a curcuminoid compound reported to be present in Curcuma longa rhizome. The current study was aimed to isolate and characterize calebin-A from Curcuma caesia rhizome and its production through biotransformation approach using endophytic fungus. C. caesia rhizomes of different ages were subjected to analysis in order to investigate the age at which maximum calebin-A content is present. HP-TLC profiles, HPLC retention times and mass spectrometry detector confirmed the occurrence of calebin-A in C. caesia rhizomes of 12 to 14 months of age but not in rhizomes younger to 12 months. Furthermore, an endophytic fungus strain, EPE-10 that was isolated from the medicinal plant C. caesia was identified as Ovatospora brasiliensis based on morphological and molecular characteristics. This strain O. brasiliensis was deposited to the culture collected centre, MTCC Chandigarh, India under the Budapest treaty and was designated with the Accession Number MTCC 25236. Biotransformation process was carried out at 37 ± 0.5 °C with shaking for 7 days after addition of 0.01% w/v curcumin. Extraction of biotransformed products was done by following partition method and the extracts obtained were analyzed using HPTLC, HPLC and LCMS. The data of the study suggested that O. brasiliensis MTCC 25236 was found to convert curcumin to calebin-A in a time dependant manner with optimum conversion at 48 h. Furthermore, O. brasiliensis MTCC 25236 was found to be positive for the Baeyer-Villiger monooxygenase (BVMOs) enzyme activity which could possibly be the mechanism of this bioconversion. The results of this study for the first time indicated that the endophytic fungus identified as O. brasiliensis MTCC 25236 isolated from the C. caesia rhizome could be a possible source for naturally producing calebin-A.

4.
Food Res Int ; 121: 497-505, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31108774

RESUMO

In recent years, probiotic functional foods have gained quite a popularity and become a preferred choice among consumers, due to their positive effects on the gut microbiota and overall health. However, it is imperative for a probiotic strain to remain live and active at the time of consumption in high enough population density, in order to provide such health benefits. Thus, this study aimed to investigate the Bacillus coagulans MTCC 5856 spore stability after tea and coffee brewing and its subsequent growth in gastrointestinal tract (GIT) hostile environment. B. coagulans MTCC 5856 showed remarkable survival (94.94% and 99.76% in unroasted green coffee and tea, respectively) after brewing conditions and was able to grow in GIT hostile conditions using tea and coffee as a sole nutritional source. B. coagulans MTCC 5856 inclusion in tea and coffee after brewing did not significantly (P > .05) alter the sensory profile when compared to that without the probiotic inclusion. Moreover, B. coagulans MTCC 5856 growth was significantly (P < .05) higher when water soluble fibers were added during brewing, suggesting a synergistic property. It showed over 99% viability (P > .05) in tea and coffee powder at room temperature up to 24 months of storage. This study demonstrated the stability of the tested probiotic strain B. coagulans MTCC 5856 after tea and coffee brewing and its growth in GIT hostile environment, thereby suggesting functional probiotic use in tea and coffee.


Assuntos
Bacillus coagulans/crescimento & desenvolvimento , Café , Microbioma Gastrointestinal/fisiologia , Viabilidade Microbiana , Probióticos/análise , Chá , Cor , Comportamento do Consumidor , Manipulação de Alimentos , Trato Gastrointestinal/microbiologia , Humanos , Lactobacillus helveticus/metabolismo , Lacticaseibacillus rhamnosus/metabolismo , Paladar
5.
Food Sci Nutr ; 6(3): 666-673, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29876118

RESUMO

Health benefits of dietary fibers are currently being widely recognized. However, the assessment of dietary fiber as a prebiotic is essential and also important for the development of an improved synbiotic commercial preparation. Thus, the aim of this study was to evaluate the potential of galactomannan extracted from fenugreek seeds as a prebiotic fiber and also its fermentation by the probiotic strain Bacillus coagulans MTCC 5856. Nondigestibility by the gastric acid and pancreatic enzyme hydrolysis of galactomannan were determined using an in vitro model mimicking the in vivo conditions. Further, anaerobic fermentation and utilization of galactomannan by the B. coagulans MTCC 5856 was investigated followed by selective inhibition of Escherichia coli ATCC 25922. The galactomannan from fenugreek seeds was found to be nondigestible to gastric acid and also to pancreatic enzymatic hydrolysis. The galactomannan was fermented and utilized (71.4%) by the B. coagulans MTCC 5856, and also significant amount of short-chain fatty acids production was also observed. Furthermore, B. coagulans MTCC 5856 inhibited the E. coli ATCC 25922 growth when cocultured with galactomannan suggesting competitive fermentation of probiotic bacteria. Galactomannan exhibited prebiotic activity and also showed suitability with probiotic B. coagulans MTCC 5856 in a synbiotic combination. This study provides the first scientific evidence of galactomannan from fenugreek seeds as a prebiotic that may play an important role in modulating gut flora by acting as substrate to beneficial microbes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA