Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 3818, 2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35780148

RESUMO

The single-ion anisotropy and magnetic interactions in spin-ice systems give rise to unusual non-collinear spin textures, such as Pauling states and magnetic monopoles. The effective spin correlation strength (Jeff) determines the relative energies of the different spin-ice states. With this work, we display the capability of capacitive torque magnetometry in characterizing the magneto-chemical potential associated with monopole formation. We build a magnetic phase diagram of Ho2Ti2O7, and show that the magneto-chemical potential depends on the spin sublattice (α or ß), i.e., the Pauling state, involved in the transition. Monte Carlo simulations using the dipolar-spin-ice Hamiltonian support our findings of a sublattice-dependent magneto-chemical potential, but the model underestimates the Jeff for the ß-sublattice. Additional simulations, including next-nearest neighbor interactions (J2), show that long-range exchange terms in the Hamiltonian are needed to describe the measurements. This demonstrates that torque magnetometry provides a sensitive test for Jeff and the spin-spin interactions that contribute to it.

2.
Science ; 368(6486): 32-33, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32241938
3.
Artigo em Inglês | MEDLINE | ID: mdl-38617995

RESUMO

We present an extensive study on the effect of substrate orientation, strain, stoichiometry, and defects on spin-ice physics in Ho2Ti2O7 thin films grown onto yttria-stabilized-zirconia substrates. We find that growth in different orientations produces different strain states in the films. All films exhibit similar c-axis lattice parameters for their relaxed portions, which are consistently larger than the bulk value of 10.1 Å. Transmission electron microscopy reveals antisite disorder and growth defects to be present in the films, but evidence of stuffing is not observed. The amount of disorder depends on the growth orientation, with the (110) film showing the least. Magnetization measurements at 1.8 K show the expected magnetic anisotropy and saturation magnetization values associated with a spin ice for all orientations; shape anisotropy is apparent when comparing in- and out-of-plane directions. Significantly, only the (110)-oriented films display the hallmark spin-ice plateau state in magnetization, albeit less well defined compared to the plateau observed in a single crystal. Neutron-scattering maps on the more disordered (111)-oriented films show the Q=0 phase previously observed in bulk materials, but the Q=X phase giving the plateau state remains elusive. We conclude that the spin-ice physics in thin films is modified by defects and strain, leading to a reduction in the temperature at which correlations drive the system into the spin-ice state.

4.
Nano Lett ; 17(6): 3556-3562, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28471679

RESUMO

The ability to switch the ferroelectric polarization using an electric field makes ferroelectrics attractive for application in nanodevices such as high-density memories. One of the major challenges impeding this application, however, has been known as "retention failure", which is a spontaneous process of polarization back-switching that can lead to data loss. This process is generally thought to be caused by the domain instability arising from interface boundary conditions and countered by defects, which can pin the domain wall and impede the back-switching. Here, using in situ transmission electron microscopy and atomic-scale scanning transmission electron microscopy, we show that the polarization retention failure can be induced by commonly observed nanoscale impurity defects in BiFeO3 thin films. The interaction between polarization and the defects can also lead to the stabilization of novel functional nanodomains with mixed-phase structures and head-to-head polarization configurations. Thus, defect engineering provides a new route for tuning properties of ferroelectric nanosystems.

5.
Phys Rev Lett ; 114(25): 256801, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26197138

RESUMO

We report on the use of helium ion implantation to independently control the out-of-plane lattice constant in epitaxial La(0.7)Sr(0.3)MnO(3) thin films without changing the in-plane lattice constants. The process is reversible by a vacuum anneal. Resistance and magnetization measurements show that even a small increase in the out-of-plane lattice constant of less than 1% can shift the metal-insulator transition and Curie temperatures by more than 100 °C. Unlike conventional epitaxy-based strain tuning methods which are constrained not only by the Poisson effect but by the limited set of available substrates, the present study shows that strain can be independently and continuously controlled along a single axis. This permits novel control over orbital populations through Jahn-Teller effects, as shown by Monte Carlo simulations on a double-exchange model. The ability to reversibly control a single lattice parameter substantially broadens the phase space for experimental exploration of predictive models and leads to new possibilities for control over materials' functional properties.

6.
Adv Sci (Weinh) ; 2(8): 1500041, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27980962

RESUMO

Experiments demonstrate that under large epitaxial strain a coexisting striped phase emerges in BiFeO3 thin films, which comprises a tetragonal-like (T') and an intermediate S' polymorph. It exhibits a relatively large piezoelectric response when switching between the coexisting phase and a uniform T' phase. This strain-induced phase transformation is investigated through a synergistic combination of first-principles theory and experiments. The results show that the S' phase is energetically very close to the T' phase, but is structurally similar to the bulk rhombohedral (R) phase. By fully characterizing the intermediate S' polymorph, it is demonstrated that the flat energy landscape resulting in the absence of an energy barrier between the T' and S' phases fosters the above-mentioned reversible phase transformation. This ability to readily transform between the S' and T' polymorphs, which have very different octahedral rotation patterns and c/a ratios, is crucial to the enhanced piezoelectricity in strained BiFeO3 films. Additionally, a blueshift in the band gap when moving from R to S' to T' is observed. These results emphasize the importance of strain engineering for tuning electromechanical responses or, creating unique energy harvesting photonic structures, in oxide thin film architectures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...