Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Stem Cell Res ; 77: 103429, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38703666

RESUMO

Alagille syndrome (ALGS) is an autosomal dominant, multisystemic disorder due to haploinsufficiency in JAG1 or less frequently, mutations in NOTCH2. The disease has been difficult to diagnose and treat due to variable expression. The generation of this iPSC line (TRNDi036-A) carrying a heterozygous mutation (p.Cys693*) in the JAG1 gene provides a means of studying the disease and developing novel therapeutics towards patient treatment.

3.
Stem Cell Res ; 73: 103231, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37890331

RESUMO

Alagille syndrome (ALGS) is an autosomal dominant, multisystemic disorder due to haploinsufficiency in either the JAG1 gene (ALGS type 1) or the NOTCH2 gene (ALGS type 2). The disease has been difficult to diagnose and treat due to its muti-system clinical presentation, variable expressivity, and prenatal onset for some of the features. The generation of this iPSC line (TRNDi032-A) carrying a heterozygous mutation, p.Cys682Leufs*7 (c.2044dup), in the JAG1 gene provides a means of studying the disease and developing novel therapeutics towards patient treatment.


Assuntos
Síndrome de Alagille , Células-Tronco Pluripotentes Induzidas , Humanos , Síndrome de Alagille/genética , Síndrome de Alagille/diagnóstico , Síndrome de Alagille/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Mutação/genética
4.
Curr Protoc ; 3(8): e866, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37610273

RESUMO

Human induced pluripotent stem cells (hiPSCs) are characterized by unlimited self-renewal and the capability to differentiate into all three germ layers, with the potential to further differentiate into all types of cells and tissues. Human iPSCs retain all genetic information from their original donors and can be developed into disease models to study disease pathophysiology, identify disease phenotypes and biomarkers, and evaluate therapeutic efficacy and toxicity for drug development. Human iPSCs can also be used to develop cell therapies and regenerative medicine. In the last decade, the technologies for hiPSC generation and differentiation have advanced rapidly. Human iPSC culture and propagation are tedious and require careful handling. High-quality hiPSCs are necessary for downstream applications. The methods, techniques, and skills for hiPSC maintenance and characterization are very different from those for immortalized cell lines. It can be a challenge for new laboratory staff, and sometimes even for experienced staff, to properly culture and maintain the high quality of these cells. Here, we describe a comprehensive set of protocols for hiPSC propagation under chemically defined and feeder-free culture conditions. These step-by-step protocols describe in detail all the reagents and experimental procedures needed to culture hiPSCs. The protocols also describe experimental methods for hiPSC characterization, including immunofluorescence staining and flow cytometric analysis with a panel of pluripotency markers, a teratoma formation assay for validation of in vivo pluripotency, and detection of Sendai virus to ensure elimination of the viral vectors. These protocols have been successfully used in our laboratory for hiPSC expansion and propagation, and this article provide a useful reference guide for laboratory staff to work on hiPSC culture. Published 2023. This article is a U.S. Government work and is in the public domain in the USA. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Propagation and cryopreservation of hiPSC cultures Basic Protocol 2: Recovery of cryopreserved hiPSCs Basic Protocol 3: Validation of pluripotency markers via immunocytochemical analysis Alternate Protocol: Determination of the expression of pluripotency markers via flow cytometry analysis Basic Protocol 4: Assessment of pluripotency via in vivo teratoma formation assay Basic Protocol 5: Confirmation of Sendai viral vector clearance via RT-PCR.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Bioensaio , Diferenciação Celular , Linhagem Celular , Terapia Baseada em Transplante de Células e Tecidos
5.
Stem Cell Res ; 71: 103135, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37393720

RESUMO

Expanded human lymphoblast cells from three different aged healthy individuals, 8-year-old male, 0-year-old newborn (NB) male, and 26-year-old female, were used to generate induced pluripotent stem cell (iPSC) lines TRNDi033-A, TRNDi034-A and TRNDi035-A, respectively, by exogenous expression of five reprogramming factors, human OCT4, SOX2, KLF4, L-MYC and LIN28. The authenticity of established iPSC lines was confirmed by the expressions of stem cell markers, karyotype analysis, embryoid body formation, and scorecard analysis. These iPSC lines could serve as healthy donor controls that are age and sex matched for the studies involving patient-specific iPSCs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Feminino , Recém-Nascido , Humanos , Masculino , Idoso , Criança , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular , Fator 4 Semelhante a Kruppel , Linfócitos , Cariotipagem , Reprogramação Celular
7.
Stem Cell Res ; 65: 102974, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36399927

RESUMO

We have successfully created induced pluripotent stem cells (iPSC) from patients carrying a heterozygous mutation in the gene encoding STING. The gain-of-function mutation leads to constitutive activation of STING which leads to the development of the disease STING-associated vasculopathy with onset in infancy (SAVI). The iPSC lines derived from the SAVI patitents are shown to be morphologically and phenotypically normal and have the potential to self renew and differentiate into the three germ layers. These iPSC provide a powerful tools to investigate the role of STING in the regulation of immune responses and vascular renegeration.


Assuntos
Imunidade , Células-Tronco Pluripotentes Induzidas , Doenças Vasculares , Humanos , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/patologia , Mutação com Ganho de Função , Doenças Vasculares/genética , Doenças Vasculares/imunologia
8.
Stem Cell Res ; 64: 102933, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36215934

RESUMO

We have successfully generated induced pluripotent stem cells (iPSC) from dermal fibroblasts of the patient with a germline mutation in the coding region of the LYN kinase gene. This gain of function (GOF) mutation eliminates the inhibitory tyrosine (Y) at the position p.Y508, with an unknown established disease etiology. The iPSC carrying germline mutation in LYN are phenotypically normal, and they have capacity to differentiate toward the three germ layers. These iPSCs are critical for studying this unknown disease etiology and to the further understand the role of Lyn kinases in autoimmune disease.


Assuntos
Células-Tronco Pluripotentes Induzidas , Quinases da Família src , Humanos , Homozigoto , Mutação/genética , Tirosina/genética , Quinases da Família src/genética
9.
Stem Cell Res ; 64: 102905, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36070637

RESUMO

Genetic studies show that BLOC1S1 modulates mitochondrial and endosome-lysosome function (Wu et al., 2021a). Furthermore, Bloc1s1 mutations are linked to leukodystrophy (Bertoli-Avella et al., 2021). The Vanderver laboratory identified additional individuals with leukodystrophy that harbored either complex heterozygous (Bloc1s1 c.206A > C and c.359G > A), or homozygous (Bloc1s1 c.185 T > C) point mutations. We generated induced pluripotential stem cell (iPSC) lines from these subjects, from parents of the complex heterozygous mutations patient, and from CRISPR isogenic (c.206A > C and c.359G > A) corrected iPSC-line. These complex heterozygous, homozygous, and isogenic-corrected Bloc1s1 lines were phenotypically normal and were capable of differentiation towards the three germ layers.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Homozigoto , Células-Tronco Pluripotentes Induzidas/metabolismo , Heterozigoto , Mutação/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas do Tecido Nervoso/metabolismo
10.
Stem Cell Res ; 62: 102820, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35660921

RESUMO

We have successfully generated induced pluripotent stem cells (iPSC) from dermal fibroblasts and peripheral blood mononuclear cells from patients with a homozygous missense mutation in the gene encoding PSMB8. Biallelic loss of function mutations in this gene are responsible for the PSMB8 deficiency termed Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE). The iPSC carrying the homozygous PSMB8 gene mutation (c.224C > T, T75M) are phenotypically normal and have the capacity to differentiate toward the three germ layers. These iPSC have great potential to study the role of PMSB8 in the regulation of immune responses and other cellular pathways.


Assuntos
Células-Tronco Pluripotentes Induzidas , Lipodistrofia , Doença Crônica , Eritema Nodoso , Febre , Dedos/anormalidades , Humanos , Síndromes de Imunodeficiência , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucócitos Mononucleares/metabolismo , Lipodistrofia/genética , Lipodistrofia/metabolismo , Mutação , Síndrome
11.
Exp Cell Res ; 412(1): 113007, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34990619

RESUMO

Mucopolysaccharidosis type II (MPS II), also known as Hunter syndrome, is a rare, lysosomal disorder caused by mutations in a gene encoding iduronate-2-sulfatase (IDS). IDS deficiency results in an accumulation of glycosaminoglycans (GAGs) and secondary accumulations of other lipids in lysosomes. Symptoms of MPS II include a variety of soft and hard tissue problems, developmental delay, and deterioration of multiple organs. Enzyme replacement therapy is an approved treatment for MPS II, but fails to improve neuronal symptoms. Cell-based neuronal models of MPS II disease are needed for compound screening and drug development for the treatment of the neuronal symptoms in MPS II. In this study, three induced pluripotent stem cell (iPSC) lines were generated from three MPS II patient-derived dermal fibroblast cell lines that were differentiated into neural stem cells and neurons. The disease phenotypes were measured using immunofluorescence staining and Nile red dye staining. In addition, the therapeutic effects of recombinant human IDS enzyme, delta-tocopherol (DT), and hydroxypropyl-beta-cyclodextrin (HPBCD) were determined in the MPS II disease cells. Finally, the neural stem cells from two of the MPS II iPSC lines exhibited typical disease features including a deficiency of IDS activity, abnormal glycosaminoglycan storage, and secondary lipid accumulation. Enzyme replacement therapy partially rescued the disease phenotypes in these cells. DT showed a significant effect in reducing the secondary accumulation of lipids in the MPS II neural stem cells. In contrast, HPBCD displayed limited or no effect in these cells. Our data indicate that these MPS II cells can be used as a cell-based disease model to study disease pathogenesis, evaluate drug efficacy, and screen compounds for drug development.


Assuntos
Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mucopolissacaridose II/tratamento farmacológico , Mucopolissacaridose II/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Linhagem Celular , Terapia de Reposição de Enzimas , Glicosaminoglicanos/metabolismo , Humanos , Iduronato Sulfatase/uso terapêutico , Células-Tronco Pluripotentes Induzidas/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Modelos Neurológicos , Mucopolissacaridose II/patologia , Células-Tronco Neurais/patologia , Fenótipo , Proteínas Recombinantes/uso terapêutico , Tocoferóis/uso terapêutico
13.
Stem Cell Res ; 56: 102554, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34619643

RESUMO

NGLY1 deficiency is a rare recessive genetic disease caused by mutations in the NGLY1 gene which codes for N-glycanase 1 (NGLY1). Here, we report the generation of two gene corrected iPSC lines using a patient-derived iPSC line (NCATS-CL6103) that carried a homozygous p.R401X mutation in the NGLY1 gene. These lines contain either one (NCATS-CL6104) or two (NCATS-CL6105) CRISPR/Cas9 corrected alleles of NGLY1. This pair of NGLY1 mutation corrected iPSC lines can be used as a control for the NCATS-CL6103 which serves as a cell-based NGLY1 disease model for the study of the disease pathophysiology and evaluation of therapeutics under development.


Assuntos
Defeitos Congênitos da Glicosilação , Células-Tronco Pluripotentes Induzidas , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/deficiência , Sistemas CRISPR-Cas/genética , Defeitos Congênitos da Glicosilação/genética , Homozigoto , Humanos , Mutação/genética , National Center for Advancing Translational Sciences (U.S.) , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/genética , Estados Unidos
14.
Stem Cell Res ; 54: 102447, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34198154

RESUMO

Alagille syndrome (ALGS) is a rare autosomal dominant disorder caused by disruption of the Notch signaling pathway due to mutations in either JAGGED1 (JAG1) (ALGS type 1) or NOTCH2 (ALGS type 2). Loss of this signaling interferes with the development of many organs, but especially the liver. A human induced pluripotent stem cell (iPSC) line was generated from the fibroblasts of a patient with a p. C312X (c. 936 T > A) variant in JAG1. This iPSC line offers a valuable resource to study the disease pathophysiology and develop therapeutics to treat patients with ALGS.


Assuntos
Síndrome de Alagille , Células-Tronco Pluripotentes Induzidas , Síndrome de Alagille/genética , Heterozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Mutação/genética
15.
Stem Cell Res ; 54: 102424, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34139597

RESUMO

Fibrodysplasia ossificans progressiva (FOP) is a rare autosomal dominant disorder of progressive ossification of skeletal muscle, fascia, tendons, and ligaments. Most FOP cases are caused by a heterozygous c. 617G > A mutation in the ACVR1 gene which encodes a gain-of-function of bone morphogenetic protein type I receptor. A human induced pluripotent stem cell (iPSC) line was generated from the dermal skin fibroblasts of a FOP patient who carries the c. 617G > A mutation in the ACVR1 gene. This iPSC line provides an attractive resource for FOP disease modeling.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miosite Ossificante , Receptores de Ativinas Tipo I/genética , Heterozigoto , Humanos , Mutação , Miosite Ossificante/genética
16.
Stem Cell Res ; 53: 102366, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34087995

RESUMO

Alagille syndrome (ALGS) is a multisystem autosomal dominant disorder caused by defects in the Notch signaling pathway, including the mutation in JAGGED1 (JAG1) (ALGS type 1) or NOTCH2 (ALGS type 2). An induced pluripotent stem cell (iPSC) line was generated from the dermal fibroblasts of a 3-month-old patient with heterozygous mutation at JAG1 splicing site (Chr20: 10,629,709C>A) before exon 11. This iPSC model offers a useful resource for disease modeling to study the disease pathophysiology and to develop therapeutics for treatment of ALGS.


Assuntos
Síndrome de Alagille , Células-Tronco Pluripotentes Induzidas , Síndrome de Alagille/genética , Éxons/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lactente , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Mutação
17.
Stem Cell Res ; 53: 102387, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34088014

RESUMO

Farber disease is an ultra-rare lysosomal storage disease. Mutations in the N-acylsphingosine amidohydrolase (ASAH1) gene, which encodes for the enzyme acid ceramidase (ACDase), cause ceramides to accumulate in the body. A human induced pluripotent stem cell (iPSC) line TRNDi030-A was generated from fibroblasts of a male patient with a homozygous p. Y36C (c.107 A>G) variant in the second exon of the ASAH1 producing the alpha subunit of ACDase. This Farber disease iPSC line is a useful resource to study disease pathophysiology and to develop therapeutics for treatment of patients with Farber disease.


Assuntos
Lipogranulomatose de Farber , Células-Tronco Pluripotentes Induzidas , Ceramidase Ácida/genética , Homozigoto , Humanos , Masculino , Mutação/genética
18.
Stem Cell Res ; 54: 102400, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34051448

RESUMO

NGLY1 deficiency is a rare disorder caused by mutations in the NGLY1 gene which codes for the highly conserved N-glycanase1 (NGLY1). This enzyme functions in cytosolic deglycosylation of N- linked glycoproteins. An induced pluripotent stem cell (iPSC) line was generated from the dermal fibroblasts of a 2-year-old patient carrying compound heterozygous mutations, p.R390P and p.L318P in the NGLY1 gene. This cell-based iPSC disease model provides a resource to study disease pathophysiology and to develop a cell-based disease model for drug development for NGLY1 patients.


Assuntos
Células-Tronco Pluripotentes Induzidas , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/genética , Linhagem Celular , Pré-Escolar , Glicoproteínas , Heterozigoto , Humanos , Mutação
19.
Cells ; 10(1)2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375166

RESUMO

Pompe disease is a lysosomal storage disorder caused by autosomal recessive mutations in the acid alpha-glucosidase (GAA) gene. Acid alpha-glucosidase deficiency leads to abnormal glycogen accumulation in patient cells. Given the increasing evidence of central nervous system (CNS) involvement in classic infantile Pompe disease, we used neural stem cells, differentiated from patient induced pluripotent stem cells, to model the neuronal phenotype of Pompe disease. These Pompe neural stem cells exhibited disease-related phenotypes including glycogen accumulation, increased lysosomal staining, and secondary lipid buildup. These morphological phenotypes in patient neural stem cells provided a tool for drug efficacy evaluation. Two potential therapeutic agents, hydroxypropyl-ß-cyclodextrin and δ-tocopherol, were tested along with recombinant human acid alpha-glucosidase (rhGAA) in this cell-based Pompe model. Treatment with rhGAA reduced LysoTracker staining in Pompe neural stem cells, indicating reduced lysosome size. Additionally, treatment of diseased neural stem cells with the combination of hydroxypropyl-ß-cyclodextrin and δ-tocopherol significantly reduced the disease phenotypes. These results demonstrated patient-derived Pompe neural stem cells could be used as a model to study disease pathogenesis, to evaluate drug efficacy, and to screen compounds for drug discovery in the context of correcting CNS defects.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Doença de Depósito de Glicogênio Tipo II , alfa-Glucosidases/farmacologia , gama-Tocoferol/farmacologia , Linhagem Celular , Fibroblastos , Doença de Depósito de Glicogênio Tipo II/tratamento farmacológico , Doença de Depósito de Glicogênio Tipo II/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais
20.
Stem Cell Res ; 49: 102011, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33038742

RESUMO

Expanded human skin fibroblast cells from four different aged healthy individuals, 11-year-old female, 1-year-old male, 2-month-old male, and 8-year-old male, were used to generate integration-free induced pluripotent stem cell (iPSC) lines TRNDi021-C, TRNDi023-D, TRNDi024-D, and TRNDi025-A, respectively, by exogenous expression of four reprogramming factors, human SXO2, OCT3/4, C-MYC, KLF4. The authenticity of established iPSC lines was confirmed by the expressions of stem cell markers, karyotype analysis, and teratoma formation. These iPSC lines could serve as young healthy controls for the studies involving patient-specific iPSCs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Teratoma , Idoso , Diferenciação Celular , Reprogramação Celular , Criança , Feminino , Fibroblastos , Humanos , Lactente , Cariótipo , Cariotipagem , Fator 4 Semelhante a Kruppel , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...