Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38725372

RESUMO

BACKGROUND: Autosomal-recessive mutations in SPEG (striated muscle preferentially expressed protein kinase) have been linked to centronuclear myopathy with or without dilated cardiomyopathy (CNM5). Loss of SPEG is associated with defective triad formation, abnormal excitation-contraction coupling, calcium mishandling and disruption of the focal adhesion complex in skeletal muscles. To elucidate the underlying molecular pathways, we have utilized multi-omics tools and analysis to obtain a comprehensive view of the complex biological processes and molecular functions. METHODS: Skeletal muscles from 2-month-old SPEG-deficient (Speg-CKO) and wild-type (WT) mice were used for RNA sequencing (n = 4 per genotype) to profile transcriptomics and mass spectrometry (n = 4 for WT; n = 3 for Speg-CKO mice) to profile proteomics and phosphoproteomics. In addition, interactomics was performed using the SPEG antibody on pooled muscle lysates (quadriceps, gastrocnemius and triceps) from WT and Speg-CKO mice. Based on the multi-omics results, we performed quantitative real-time PCR, co-immunoprecipitation and immunoblot to verify the findings. RESULTS: We identified that SPEG interacts with myospryn complex proteins CMYA5, FSD2 and RyR1, which are critical for triad formation, and that SPEG deficiency results in myospryn complex abnormalities (protein levels decreased to 22 ± 3% for CMYA5 [P < 0.05] and 18 ± 3% for FSD2 [P < 0.01]). Furthermore, SPEG phosphorylates RyR1 at S2902 (phosphorylation level decreased to 55 ± 15% at S2902 in Speg-CKO mice; P < 0.05), and its loss affects JPH2 phosphorylation at multiple sites (increased phosphorylation at T161 [1.90 ± 0.24-fold], S162 [1.61 ± 0.37-fold] and S165 [1.66 ± 0.13-fold]; decreased phosphorylation at S228 and S231 [39 ± 6%], S234 [50 ± 12%], S593 [48 ± 3%] and S613 [66 ± 10%]; P < 0.05 for S162 and P < 0.01 for other sites). On analysing the transcriptome, the most dysregulated pathways affected by SPEG deficiency included extracellular matrix-receptor interaction (P < 1e-15) and peroxisome proliferator-activated receptor signalling (P < 9e-14). CONCLUSIONS: We have elucidated the critical role of SPEG in the triad as it works closely with myospryn complex proteins (CMYA5, FSD2 and RyR1), it regulates phosphorylation levels of various residues in JPH2 and S2902 in RyR1, and its deficiency is associated with dysregulation of several pathways. The study identifies unique SPEG-interacting proteins and their phosphorylation functions and emphasizes the importance of using a multi-omics approach to comprehensively evaluate the molecular function of proteins involved in various genetic disorders.

2.
Am J Hum Genet ; 111(5): 863-876, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565148

RESUMO

Copy number variants (CNVs) are significant contributors to the pathogenicity of rare genetic diseases and, with new innovative methods, can now reliably be identified from exome sequencing. Challenges still remain in accurate classification of CNV pathogenicity. CNV calling using GATK-gCNV was performed on exomes from a cohort of 6,633 families (15,759 individuals) with heterogeneous phenotypes and variable prior genetic testing collected at the Broad Institute Center for Mendelian Genomics of the Genomics Research to Elucidate the Genetics of Rare Diseases consortium and analyzed using the seqr platform. The addition of CNV detection to exome analysis identified causal CNVs for 171 families (2.6%). The estimated sizes of CNVs ranged from 293 bp to 80 Mb. The causal CNVs consisted of 140 deletions, 15 duplications, 3 suspected complex structural variants (SVs), 3 insertions, and 10 complex SVs, the latter two groups being identified by orthogonal confirmation methods. To classify CNV variant pathogenicity, we used the 2020 American College of Medical Genetics and Genomics/ClinGen CNV interpretation standards and developed additional criteria to evaluate allelic and functional data as well as variants on the X chromosome to further advance the framework. We interpreted 151 CNVs as likely pathogenic/pathogenic and 20 CNVs as high-interest variants of uncertain significance. Calling CNVs from existing exome data increases the diagnostic yield for individuals undiagnosed after standard testing approaches, providing a higher-resolution alternative to arrays at a fraction of the cost of genome sequencing. Our improvements to the classification approach advances the systematic framework to assess the pathogenicity of CNVs.


Assuntos
Variações do Número de Cópias de DNA , Sequenciamento do Exoma , Exoma , Doenças Raras , Humanos , Variações do Número de Cópias de DNA/genética , Doenças Raras/genética , Doenças Raras/diagnóstico , Exoma/genética , Masculino , Feminino , Estudos de Coortes , Testes Genéticos/métodos
3.
Nat Genet ; 56(3): 395-407, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429495

RESUMO

In digenic inheritance, pathogenic variants in two genes must be inherited together to cause disease. Only very few examples of digenic inheritance have been described in the neuromuscular disease field. Here we show that predicted deleterious variants in SRPK3, encoding the X-linked serine/argenine protein kinase 3, lead to a progressive early onset skeletal muscle myopathy only when in combination with heterozygous variants in the TTN gene. The co-occurrence of predicted deleterious SRPK3/TTN variants was not seen among 76,702 healthy male individuals, and statistical modeling strongly supported digenic inheritance as the best-fitting model. Furthermore, double-mutant zebrafish (srpk3-/-; ttn.1+/-) replicated the myopathic phenotype and showed myofibrillar disorganization. Transcriptome data suggest that the interaction of srpk3 and ttn.1 in zebrafish occurs at a post-transcriptional level. We propose that digenic inheritance of deleterious changes impacting both the protein kinase SRPK3 and the giant muscle protein titin causes a skeletal myopathy and might serve as a model for other genetic diseases.


Assuntos
Doenças Musculares , Peixe-Zebra , Animais , Humanos , Masculino , Conectina/genética , Conectina/metabolismo , Músculo Esquelético , Doenças Musculares/genética , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Mutação , Peixe-Zebra/genética
4.
bioRxiv ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38464009

RESUMO

SELENON-Related Myopathy (SELENON-RM) is a rare congenital myopathy caused by mutations of the SELENON gene characterized by axial muscle weakness and progressive respiratory insufficiency. Muscle histopathology commonly includes multiminicores or a dystrophic pattern but is often non-specific. The SELENON gene encodes selenoprotein N (SelN), a selenocysteine-containing redox enzyme located in the endo/sarcoplasmic reticulum membrane where it colocalizes with mitochondria-associated membranes. However, the molecular mechanism(s) by which SelN deficiency causes SELENON-RM are undetermined. A hurdle is the lack of cellular and animal models that show assayable phenotypes. Here we report deep-phenotyping of SelN-deficient zebrafish and muscle cells. SelN-deficient zebrafish exhibit changes in embryonic muscle function and swimming activity in larvae. Analysis of single cell RNAseq data in a zebrafish embryo-atlas revealed coexpression between selenon and genes involved in glutathione redox pathway. SelN-deficient zebrafish and mouse myoblasts exhibit changes in glutathione and redox homeostasis, suggesting a direct relationship with SelN function. We report changes in metabolic function abnormalities in SelN-null myotubes when compared to WT. These results suggest that SelN has functional roles during zebrafish early development and myoblast metabolism.

6.
EBioMedicine ; 99: 104894, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38086156

RESUMO

BACKGROUND: X-linked myotubular myopathy (XLMTM) is a rare, life-threatening congenital muscle disease caused by mutations in the MTM1 gene that result in profound muscle weakness, significant respiratory insufficiency, and high infant mortality. There is no approved disease-modifying therapy for XLMTM. Resamirigene bilparvovec (AT132; rAAV8-Des-hMTM1) is an investigational adeno-associated virus (AAV8)-mediated gene replacement therapy designed to deliver MTM1 to skeletal muscle cells and achieve long-term correction of XLMTM-related muscle pathology. The clinical trial ASPIRO (NCT03199469) investigating resamirigene bilparvovec in XLMTM is currently paused while the risk:benefit balance associated with this gene therapy is further investigated. METHODS: Muscle biopsies were taken before treatment and 24 and 48 weeks after treatment from ten boys with XLMTM in a clinical trial of resamirigene bilparvovec (ASPIRO; NCT03199469). Comprehensive histopathological analysis was performed. FINDINGS: Baseline biopsies uniformly showed findings characteristic of XLMTM, including small myofibres, increased internal or central nucleation, and central aggregates of organelles. Biopsies taken at 24 weeks post-treatment showed marked improvement of organelle localisation, without apparent increases in myofibre size in most participants. Biopsies taken at 48 weeks, however, did show statistically significant increases in myofibre size in all nine biopsies evaluated at this timepoint. Histopathological endpoints that did not demonstrate statistically significant changes with treatment included the degree of internal/central nucleation, numbers of triad structures, fibre type distributions, and numbers of satellite cells. Limited (predominantly mild) treatment-associated inflammatory changes were seen in biopsy specimens from five participants. INTERPRETATION: Muscle biopsies from individuals with XLMTM treated with resamirigene bilparvovec display statistically significant improvement in organelle localisation and myofibre size during a period of substantial improvements in muscle strength and respiratory function. This study identifies valuable histological endpoints for tracking treatment-related gains with resamirigene bilparvovec, as well as endpoints that did not show strong correlation with clinical improvement in this human study. FUNDING: Astellas Gene Therapies (formerly Audentes Therapeutics, Inc.).


Assuntos
Músculo Esquelético , Miopatias Congênitas Estruturais , Masculino , Lactente , Humanos , Músculo Esquelético/patologia , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Debilidade Muscular , Força Muscular , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/terapia , Miopatias Congênitas Estruturais/patologia
7.
J Med Genet ; 61(4): 369-377, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-37935568

RESUMO

BACKGROUND: Titinopathies are caused by mutations in the titin gene (TTN). Titin is the largest known human protein; its gene has the longest coding phase with 364 exons. Titinopathies are very complex neuromuscular pathologies due to the variable age of onset of symptoms, the great diversity of pathological and muscular impairment patterns (cardiac, skeletal muscle or mixed) and both autosomal dominant and recessive modes of transmission. Until now, only few CNVs in TTN have been reported without clear genotype-phenotype associations. METHODS: Our study includes eight families with dominant titinopathies. We performed next-generation sequencing or comparative genomic hybridisation array analyses and found CNVs in the TTN gene. We characterised these CNVs by RNA sequencing (RNAseq) analyses in six patients' muscles and performed genotype-phenotype inheritance association study by combining the clinical and biological data of these eight families. RESULTS: Seven deletion-type CNVs in the TTN gene were identified among these families. Genotype and RNAseq results showed that five deletions do not alter the reading frame and one is out-of-reading frame. The main phenotype identified was distal myopathy associated with contractures. The analysis of morphological, clinical and genetic data and imaging let us draw new genotype-phenotype associations of titinopathies. CONCLUSION: Identifying TTN CNVs will further increase diagnostic sensitivity in these complex neuromuscular pathologies. Our cohort of patients enabled us to identify new deletion-type CNVs in the TTN gene, with unexpected autosomal dominant transmission. This is valuable in establishing new genotype-phenotype associations of titinopathies, mainly distal myopathy in most of the patients.


Assuntos
Miopatias Distais , Humanos , Conectina/genética , Miopatias Distais/genética , Variações do Número de Cópias de DNA/genética , Músculo Esquelético/patologia , Mutação/genética , Fenótipo
8.
Am J Med Genet A ; 194(5): e63509, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38158391

RESUMO

Advances in bioinformatic tools paired with the ongoing accumulation of genetic knowledge and periodic reanalysis of genomic sequencing data have led to an improvement in genetic diagnostic rates. Candidate gene variants (CGVs) identified during sequencing or on reanalysis but not yet implicated in human disease or associated with a phenotypically distinct condition are often not revisited, leading to missed diagnostic opportunities. Here, we revisited 33 such CGVs from our previously published study and determined that 16 of them are indeed disease-causing (novel or phenotype expansion) since their identification. These results emphasize the need to focus on previously identified CGVs during sequencing or reanalysis and the importance of sharing that information with researchers around the world, including relevant functional analysis to establish disease causality.


Assuntos
Biologia Computacional , Genômica , Humanos , Sequenciamento do Exoma , Fenótipo , Genômica/métodos , Biologia Computacional/métodos , Alelos
9.
Lancet Neurol ; 22(12): 1125-1139, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37977713

RESUMO

BACKGROUND: X-linked myotubular myopathy is a rare, life-threatening, congenital muscle disease observed mostly in males, which is caused by mutations in MTM1. No therapies are approved for this disease. We aimed to assess the safety and efficacy of resamirigene bilparvovec, which is an adeno-associated viral vector serotype 8 delivering human MTM1. METHODS: ASPIRO is an open-label, dose-escalation trial at seven academic medical centres in Canada, France, Germany, and the USA. We included boys younger than 5 years with X-linked myotubular myopathy who required mechanical ventilator support. The trial was initially in two parts. Part 1 was planned as a safety and dose-escalation phase in which participants were randomly allocated (2:1) to either the first dose level (1·3 × 1014 vector genomes [vg]/kg bodyweight) of resamirigene bilparvovec or delayed treatment, then, for later participants, to either a higher dose (3·5 × 1014 vg/kg bodyweight) of resamirigene bilparvovec or delayed treatment. Part 2 was intended to confirm the dose selected in part 1. Resamirigene bilparvovec was administered as a single intravenous infusion. An untreated control group comprised boys who participated in a run-in study (INCEPTUS; NCT02704273) or those in the delayed treatment cohort who did not receive any dose. The primary efficacy outcome was the change from baseline to week 24 in hours of daily ventilator support. After three unexpected deaths, dosing at the higher dose was stopped and the two-part feature of the study design was eliminated. Because of changes to the study design during its implementation, analyses were done on an as-treated basis and are deemed exploratory. All treated and control participants were included in the safety analysis. The trial is registered with ClinicalTrials.gov, NCT03199469. Outcomes are reported as of Feb 28, 2022. ASPIRO is currently paused while deaths in dosed participants are investigated. FINDINGS: Between Aug 3, 2017 and June 1, 2021, 30 participants were screened for eligibility, of whom 26 were enrolled; six were allocated to the lower dose, 13 to the higher dose, and seven to delayed treatment. Of the seven children whose treatment was delayed, four later received the higher dose (n=17 total in the higher dose cohort), one received the lower dose (n=7 total in the lower dose cohort), and two received no dose and joined the control group (n=14 total, including 12 children from INCEPTUS). Median age at dosing or enrolment was 12·1 months (IQR 10·0-30·9; range 9·5-49·7) in the lower dose cohort, 31·1 months (16·0-64·7; 6·8-72·7) in the higher dose cohort, and 18·7 months (10·1-31·5; 5·9-39·3) in the control cohort. Median follow-up was 46·1 months (IQR 41·0-49·5; range 2·1-54·7) for lower dose participants, 27·6 months (24·6-29·1; 3·4-41·0) for higher dose participants, and 28·3 months (9·7-46·9; 5·7-32·7) for control participants. At week 24, lower dose participants had an estimated 77·7 percentage point (95% CI 40·22 to 115·24) greater reduction in least squares mean hours per day of ventilator support from baseline versus controls (p=0·0002), and higher dose participants had a 22·8 percentage point (6·15 to 39·37) greater reduction from baseline versus controls (p=0·0077). One participant in the lower dose cohort and three in the higher dose cohort died; at the time of death, all children had cholestatic liver failure following gene therapy (immediate causes of death were sepsis; hepatopathy, severe immune dysfunction, and pseudomonal sepsis; gastrointestinal haemorrhage; and septic shock). Three individuals in the control group died (haemorrhage presumed related to hepatic peliosis; aspiration pneumonia; and cardiopulmonary failure). INTERPRETATION: Most children with X-linked myotubular myopathy who received MTM1 gene replacement therapy had important improvements in ventilator dependence and motor function, with more than half of dosed participants achieving ventilator independence and some attaining the ability to walk independently. Investigations into the risk for underlying hepatobiliary disease in X-linked myotubular myopathy, and the need for monitoring of liver function before gene replacement therapy, are ongoing. FUNDING: Astellas Gene Therapies.


Assuntos
Miopatias Congênitas Estruturais , Sepse , Masculino , Criança , Humanos , Lactente , Pré-Escolar , França , Terapia Genética/efeitos adversos , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/terapia , Alemanha , Resultado do Tratamento
10.
medRxiv ; 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37873196

RESUMO

Copy number variants (CNVs) are significant contributors to the pathogenicity of rare genetic diseases and with new innovative methods can now reliably be identified from exome sequencing. Challenges still remain in accurate classification of CNV pathogenicity. CNV calling using GATK-gCNV was performed on exomes from a cohort of 6,633 families (15,759 individuals) with heterogeneous phenotypes and variable prior genetic testing collected at the Broad Institute Center for Mendelian Genomics of the GREGoR consortium. Each family's CNV data was analyzed using the seqr platform and candidate CNVs classified using the 2020 ACMG/ClinGen CNV interpretation standards. We developed additional evidence criteria to address situations not covered by the current standards. The addition of CNV calling to exome analysis identified causal CNVs for 173 families (2.6%). The estimated sizes of CNVs ranged from 293 bp to 80 Mb with estimates that 44% would not have been detected by standard chromosomal microarrays. The causal CNVs consisted of 141 deletions, 15 duplications, 4 suspected complex structural variants (SVs), 3 insertions and 10 complex SVs, the latter two groups being identified by orthogonal validation methods. We interpreted 153 CNVs as likely pathogenic/pathogenic and 20 CNVs as high interest variants of uncertain significance. Calling CNVs from existing exome data increases the diagnostic yield for individuals undiagnosed after standard testing approaches, providing a higher resolution alternative to arrays at a fraction of the cost of genome sequencing. Our improvements to the classification approach advances the systematic framework to assess the pathogenicity of CNVs.

11.
Orphanet J Rare Dis ; 18(1): 138, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280644

RESUMO

BACKGROUND: X-linked myotubular myopathy (XLMTM) is a rare, life-threatening congenital myopathy with multisystem involvement, often requiring invasive ventilator support, gastrostomy tube feeding, and wheelchair use. Understanding healthcare resource utilization in patients with XLMTM is important for development of targeted therapies but data are limited. METHODS: We analyzed individual medical codes as governed by Healthcare Common Procedure Coding System, Current Procedural Terminology, and International Classification of Diseases, 10th Revision (ICD-10) for a defined cohort of XLMTM patients within a US medical claims database. Using third-party tokenization software, we defined a cohort of XLMTM patient tokens from a de-identified dataset in a research registry of diagnostically confirmed XLMTM patients and de-identified data from a genetic testing company. After approval of an ICD-10 diagnosis code for XLMTM (G71.220) in October 2020, we identified additional patients. RESULTS: A total of 192 males with a diagnosis of XLMTM were included: 80 patient tokens and 112 patients with the new ICD-10 code. From 2016 to 2020, the annual number of patients with claims increased from 120 to 154 and the average number of claims per patient per year increased from 93 to 134. Of 146 patients coded with hospitalization claims, 80 patients (55%) were first hospitalized between 0 and 4 years of age. Across all patients, 31% were hospitalized 1-2 times, 32% 3-9 times, and 14% ≥ 10 times. Patients received care from multiple specialty practices: pulmonology (53%), pediatrics (47%), neurology (34%), and critical care medicine (31%). The most common conditions and procedures related to XLMTM were respiratory events (82%), ventilation management (82%), feeding difficulties (81%), feeding support (72%), gastrostomy (69%), and tracheostomy (64%). Nearly all patients with respiratory events had chronic respiratory claims (96%). The most frequent diagnostic codes were those investigating hepatobiliary abnormalities. CONCLUSIONS: This innovative medical claims analysis shows substantial healthcare resource use in XLMTM patients that increased over the last 5 years. Most patients required respiratory and feeding support and experienced multiple hospitalizations throughout childhood and beyond for those that survived. This pattern delineation will inform outcome assessments with the emergence of novel therapies and supportive care measures.


Assuntos
Testes Genéticos , Miopatias Congênitas Estruturais , Masculino , Humanos , Criança , Estados Unidos , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/terapia , Miopatias Congênitas Estruturais/diagnóstico , Aceitação pelo Paciente de Cuidados de Saúde
12.
Am J Hum Genet ; 110(7): 1034-1045, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37279760

RESUMO

Newborn genomic sequencing (NBSeq) to screen for medically important genetic information is of considerable interest but data characterizing the actionability of such findings, and the downstream medical efforts in response to discovery of unanticipated genetic risk variants, are lacking. From a clinical trial of comprehensive exome sequencing in 127 apparently healthy infants and 32 infants in intensive care, we previously identified 17 infants (10.7%) with unanticipated monogenic disease risks (uMDRs). In this analysis, we assessed actionability for each of these uMDRs with a modified ClinGen actionability semiquantitative metric (CASQM) and created radar plots representing degrees of penetrance of the condition, severity of the condition, effectiveness of intervention, and tolerability of intervention. In addition, we followed each of these infants for 3-5 years after disclosure and tracked the medical actions prompted by these findings. All 17 uMDR findings were scored as moderately or highly actionable on the CASQM (mean 9, range: 7-11 on a 0-12 scale) and several distinctive visual patterns emerged on the radar plots. In three infants, uMDRs revealed unsuspected genetic etiologies for existing phenotypes, and in the remaining 14 infants, uMDRs provided risk stratification for future medical surveillance. In 13 infants, uMDRs prompted screening for at-risk family members, three of whom underwent cancer-risk-reducing surgeries. Although assessments of clinical utility and cost-effectiveness will require larger datasets, these findings suggest that large-scale comprehensive sequencing of newborns will reveal numerous actionable uMDRs and precipitate substantial, and in some cases lifesaving, downstream medical care in newborns and their family members.


Assuntos
Testes Genéticos , Genoma Humano , Humanos , Recém-Nascido , Triagem Neonatal , Genômica , Sequenciamento do Exoma
13.
Pharmaceuticals (Basel) ; 16(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37375769

RESUMO

Adenylosuccinic acid (ASA) is an orphan drug that was once investigated for clinical application in Duchenne muscular dystrophy (DMD). Endogenous ASA participates in purine recycling and energy homeostasis but might also be crucial for averting inflammation and other forms of cellular stress during intense energy demand and maintaining tissue biomass and glucose disposal. This article documents the known biological functions of ASA and explores its potential application for the treatment of neuromuscular and other chronic diseases.

14.
bioRxiv ; 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37162921

RESUMO

Autosomal-recessive mutations in SPEG (striated muscle preferentially expressed protein kinase) have been linked to centronuclear myopathy. Loss of SPEG is associated with defective triad formation, abnormal excitation-contraction coupling, and calcium mishandling in skeletal muscles. To elucidate the underlying molecular pathways, we have utilized multi-omics tools and analysis to obtain a comprehensive view of the complex biological processes. We identified that SPEG interacts with myospryn complex proteins (CMYA5, FSD2, RyR1), and SPEG deficiency results in myospryn complex abnormalities. In addition, transcriptional and protein profiles of SPEG-deficient muscle revealed defective mitochondrial function including aberrant accumulation of enlarged mitochondria on electron microscopy. Furthermore, SPEG regulates RyR1 phosphorylation at S2902, and its loss affects JPH2 phosphorylation at multiple sites. On analyzing the transcriptome, the most dysregulated pathways affected by SPEG deficiency included extracellular matrix-receptor interaction and peroxisome proliferator-activated receptors signaling, which may be due to defective triad and mitochondrial abnormalities. In summary, we have elucidated the critical role of SPEG in triad as it works closely with myospryn complex, phosphorylates JPH2 and RyR1, and demonstrated that its deficiency is associated with mitochondrial abnormalities. This study emphasizes the importance of using multi-omics techniques to comprehensively analyze the molecular anomalies of rare diseases. Synopsis: We have previously linked mutations in SPEG (striated preferentially expressed protein) with a recessive form of centronuclear myopathy and/or dilated cardiomyopathy and have characterized a striated muscle-specific SPEG-deficient mouse model that recapitulates human disease with disruption of the triad structure and calcium homeostasis in skeletal muscles. In this study, we applied multi-omics approaches (interactomic, proteomic, phosphoproteomic, and transcriptomic analyses) in the skeletal muscles of SPEG-deficient mice to assess the underlying pathways associated with the pathological and molecular abnormalities. SPEG interacts with myospryn complex proteins (CMYA5, FSD2, RyR1), and its deficiency results in myospryn complex abnormalities.SPEG regulates RyR1 phosphorylation at S2902, and its loss affects JPH2 phosphorylation at multiple sites.SPEGα and SPEGß have different interacting partners suggestive of differential function.Transcriptome analysis indicates dysregulated pathways of ECM-receptor interaction and peroxisome proliferator-activated receptor signaling.Mitochondrial defects on the transcriptome, proteome, and electron microscopy, may be a consequence of defective calcium signaling.

15.
Expert Opin Drug Discov ; 18(6): 629-641, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37183669

RESUMO

INTRODUCTION: Zebrafish larvae are one of the few vertebrates amenable to large-scale drug discovery screens. Larval swimming behavior is often used as an outcome variable and many fields of study have developed assays for evaluating swimming performance. An unintended consequence of this wide interest is that details related to assay methodology and interpretation become scattered across the literature. The aim of this review is to consolidate this information, particularly as it relates to high-throughput approaches. AREAS COVERED: The authors describe larval swimming behaviors as this forms the basis for understanding their experimentally evoked swimming or spontaneous activity. Next, they detail how swimming activity can serve as an outcome variable, particularly in the multi-well formats used in large-scale screening studies. They also highlight biological and technical factors that can impact the sensitivity and variability of these measurements. EXPERT OPINION: Careful attention to animal husbandry, experimental design, data acquisition, and interpretation of results can improve screen outcomes by maximizing swimming activity while minimizing intra- and inter-larval variability. The development of more sensitive, quantitative methods of assessing swimming performance that can be incorporated into high-throughput workflows will be important in order to take full advantage of the zebrafish model.


Assuntos
Natação , Peixe-Zebra , Animais , Natação/fisiologia , Peixe-Zebra/fisiologia , Larva/fisiologia , Descoberta de Drogas
16.
Genes (Basel) ; 14(4)2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-37107537

RESUMO

BACKGROUND: Children and adolescents with early-onset psychosis (EOP) have more rare genetic variants than individuals with adult-onset forms of the illness, implying that fewer EOP participants are needed for genetic discovery. The Schizophrenia Exome Sequencing Meta-analysis (SCHEMA) study predicted that 10 genes with ultra-rare variation were linked to adult-onset schizophrenia. We hypothesized that rare variants predicted "High" and "Moderate" by the Variant Effect Predictor Algorithm (abbreviated as VEPHMI) in these 10 genes would be enriched in our EOP cohort. METHODS: We compared rare VEPHMI variants in individuals with EOP (N = 34) with race- and sex-matched controls (N = 34) using the sequence kernel association test (SKAT). RESULTS: GRIN2A variants were significantly increased in the EOP cohort (p = 0.004), with seven individuals (20% of the EOP cohort) carrying a rare VEPHMI variant. The EOP cohort was then compared to three additional control cohorts. GRIN2A variants were significantly increased in the EOP cohort for two of the additional control sets (p = 0.02 and p = 0.02), and trending towards significance for the third (p = 0.06). CONCLUSION: Despite a small sample size, GRIN2A VEPHMI variant burden was increased in a cohort of individuals with EOP in comparison to controls. GRIN2A variants have been associated with a range of neuropsychiatric disorders including adult-onset psychotic spectrum disorder and childhood-onset schizophrenia. This study supports the role of GRIN2A in EOP and emphasizes its role in neuropsychiatric disorders.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Adulto , Adolescente , Humanos , Criança , Transtornos Psicóticos/genética , Esquizofrenia/genética , Testes Genéticos
17.
Bone ; 172: 116763, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37059315

RESUMO

X-linked hypophosphatemia is the most common cause of inherited rickets, due to inactivating variants of PHEX. More than 800 variants have been described to date and one which consists of a single base change in the 3' untranslated region (UTR) (c.*231A>G) is reported as prevalent in North America. Recently an exon 13-15 duplication has been found to occur in concert with the c.*231A>G variant, and thus it is unclear whether the pathogenicity is solely a function of the UTR variant. We present a family with XLH who harbors the exon 13-15 duplication but does not carry the 3'UTR variant, providing evidence that the duplication itself is the pathogenic variant when these two variants are found in cis.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Doenças Genéticas Ligadas ao Cromossomo X , Hipofosfatemia , Humanos , Raquitismo Hipofosfatêmico Familiar/genética , Raquitismo Hipofosfatêmico Familiar/patologia , Endopeptidase Neutra Reguladora de Fosfato PHEX/genética , Éxons/genética , Regiões 3' não Traduzidas , Hipofosfatemia/genética , Mutação
18.
Adv Genet (Hoboken) ; 4(1): 2200013, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36910591

RESUMO

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic pain disorder causing symptoms of urinary frequency, urgency, and bladder discomfort or pain. Although this condition affects a large population, little is known about its etiology. Genetic analyses of whole exome sequencing are performed on 109 individuals with IC/BPS. One family has a previously reported SIX5 variant (ENST00000317578.6:c.472G>A, p.Ala158Thr), consistent with Branchiootorenal syndrome 2 (BOR2). A likely pathogenic heterozygous variant in ATP2A2 (ENST00000539276.2:c.235G>A, p.Glu79Lys) is identified in two unrelated probands, indicating possible Darier-White disease. Two private heterozygous variants are identified in ATP2C1 (ENST00000393221.4:c.2358A>T, p.Glu786Asp (VUS/Likely Pathogenic) and ENST00000393221.4:c.989C>G, p.Thr330Ser (likely pathogenic)), indicative of Hailey-Hailey Disease. Sequence kernel association test analysis finds an increased burden of rare ATP2C1 variants in the IC/BPS cases versus a control cohort (p = 0.03, OR = 6.76), though does not survive Bonferroni correction. The data suggest that some individuals with IC/BPS may have unrecognized Mendelian syndromes. Comprehensive phenotyping and genotyping aid in understanding the range of diagnoses in the population-based IC/BPS cohort. Conversely, ATP2C1, ATP2A2, and SIX5 may be candidate genes for IC/BPS. Further evaluation with larger numbers is needed. Genetically screening individuals with IC/BPS may help diagnose and treat this painful disorder due to its heterogeneous nature.

19.
Am J Physiol Cell Physiol ; 324(3): C769-C776, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36745529

RESUMO

Congenital myopathies are a vast group of genetic muscle diseases. Among the causes are mutations in the MYH2 gene resulting in truncated type IIa myosin heavy chains (MyHCs). The precise cellular and molecular mechanisms by which these mutations induce skeletal muscle symptoms remain obscure. Hence, in the present study, we aimed to explore whether such genetic defects would alter the presence as well as the post-translational modifications of MyHCs and the functionality of myosin molecules. For this, we dissected muscle fibers from four myopathic patients with MYH2 truncating mutations and from five human healthy controls. We then assessed 1) MyHCs presence/post-translational modifications using LC/MS; 2) relaxed myosin conformation and concomitant ATP consumption with a loaded Mant-ATP chase setup; 3) myosin activation with an unloaded in vitro motility assay; and 4) cellular force production with a myofiber mechanical setup. Interestingly, the type IIa MyHC with one additional acetylated lysine (Lys35-Ac) was present in the patients. This was accompanied by 1) a higher ATP demand of myosin heads in the disordered-relaxed conformation; 2) faster actomyosin kinetics; and 3) reduced muscle fiber force. Overall, our findings indicate that MYH2 truncating mutations impact myosin presence/functionality in human adult mature myofibers by disrupting the ATPase activity and actomyosin complex. These are likely important molecular pathological disturbances leading to the myopathic phenotype in patients.


Assuntos
Actomiosina , Doenças Musculares , Adulto , Humanos , Doenças Musculares/patologia , Mutação/genética , Músculo Esquelético/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Processamento de Proteína Pós-Traducional/genética
20.
Biomolecules ; 13(1)2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36671517

RESUMO

Several studies have identified rare and common genetic variants associated with severe COVID-19, but no study has reported genetic determinants as predisposition factors for neurological complications. In this report, we identified rare/unique structural variants (SVs) implicated in neurological functions in two individuals with neurological manifestations of COVID-19. This report highlights the possible genetic link to the neurological symptoms with COVID-19 and calls for a collective effort to study these cohorts for a possible genetic linkage.


Assuntos
COVID-19 , Doenças do Sistema Nervoso , Humanos , COVID-19/complicações , COVID-19/genética , Predisposição Genética para Doença , Doenças do Sistema Nervoso/genética , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...