Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 115(15): 153901, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26550722

RESUMO

By performing a full analysis of the projected local density of states (LDOS) in a photonic crystal waveguide, we show that phase plays a crucial role in the symmetry of the light-matter interaction. By considering a quantum dot (QD) spin coupled to a photonic crystal waveguide (PCW) mode, we demonstrate that the light-matter interaction can be asymmetric, leading to unidirectional emission and a deterministic entangled photon source. Further we show that understanding the phase associated with both the LDOS and the QD spin is essential for a range of devices that can be realized with a QD in a PCW. We also show how suppression of quantum interference prevents dipole induced reflection in the waveguide, and highlight a fundamental breakdown of the semiclassical dipole approximation for describing light-matter interactions in these spin dependent systems.

2.
Opt Express ; 21(14): 16504-13, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23938501

RESUMO

We demonstrate that interference of absorption pathways can be used to control resonant coupling of light to guided modes in a manner analogous to quantum coherent control or electronically induced transparency. We illustrate the control of resonant coupling that interference affords using a plasmonic test system where tuning the phase of a grating is sufficient to vary the transfer of energy into the surface plasmon polariton by a factor of over 10(6). We show that such a structure could function as a one-way coupler, and present a simple explanation for the underlying physics.


Assuntos
Modelos Teóricos , Refratometria/instrumentação , Refratometria/métodos , Ressonância de Plasmônio de Superfície/instrumentação , Ressonância de Plasmônio de Superfície/métodos , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação
3.
Opt Express ; 18(14): 14654-63, 2010 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-20639951

RESUMO

We report statistical fluctuations for the transmissions of a series of photonic-crystal waveguides (PhCWs) that are supposedly identical and that only differ because of statistical structural fabrication-induced imperfections. For practical PhCW lengths offering tolerable -3dB attenuation with moderate group indices (n(g) approximately 60), the transmission spectra contains very narrow peaks (Q approximately 20,000) that vary from one waveguide to another. The physical origin of the peaks is explained by calculating the actual electromagnetic-field pattern inside the waveguide. The peaks that are observed in an intermediate regime between the ballistic and localization transports are responsible for a smearing of the local density of states, for a rapid broadening of the probability density function of the transmission, and bring a severe constraint on the effective use of slow light for on-chip optical information processing. The experimental results are quantitatively supported by theoretical results obtained with a coupled-Bloch-mode approach that takes into account multiple scattering and localization effects.

4.
Opt Express ; 18(26): 27627-38, 2010 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-21197037

RESUMO

Slow light devices such as photonic crystal waveguides (PhCW) and coupled resonator optical waveguides (CROW) have much promise for optical signal processing applications and a number of successful demonstrations underpinning this promise have already been made. Most of these applications are limited by propagation losses, especially for higher group indices. These losses are caused by technological imperfections ("extrinsic loss") that cause scattering of light from the waveguide mode. The relationship between this loss and the group velocity is complex and until now has not been fully understood. Here, we present a comprehensive explanation of the extrinsic loss mechanisms in PhC waveguides and address some misconceptions surrounding loss and slow light that have arisen in recent years. We develop a theoretical model that accurately describes the loss spectra of PhC waveguides. One of the key insights of the model is that the entire hole contributes coherently to the scattering process, in contrast to previous models that added up the scattering from short sections incoherently. As a result, we have already realised waveguides with significantly lower losses than comparable photonic crystal waveguides as well as achieving propagation losses, in units of loss per unit time (dB/ns) that are even lower than those of state-of-the-art coupled resonator optical waveguides based on silicon photonic wires. The model will enable more advanced designs with further loss reduction within existing technological constraints.


Assuntos
Modelos Teóricos , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação
5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(5 Pt 2): 056616, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16803066

RESUMO

The eigenmode spectrum and transmission properties of a certain class of one-dimensional disordered photonic crystals have been studied statistically. It is shown that the relative fluctuation of the optical width of the period of the photonic crystal is a universal parameter allowing a quantitative description of the disordered photonic crystal for various models of disorder. It is shown that the tail of the density of states is characterized by a certain penetration depth and a quantitative relation between the penetration depth, the relative band gap width, and the disorder parameter is obtained. It is found that a threshold level of disorder exists, below which the density of states in the center of the photonic band gap vanishes, and the ensemble-averaged transmission coefficient does not change significantly with increasing disorder. Also, the standard deviation of the transmission coefficient is less than its mean value. Above threshold, the ensemble averaged transmission coefficient and density of states increase with the level of disorder rapidly, and the standard deviation of the transmission coefficient exceeds its mean value. A scaling formula is presented, which relates the logarithm of the transmission to the periodic refractive index modulation and the disorder.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA