Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 378(6618): 417-421, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36302020

RESUMO

We detected surface waves from two meteorite impacts on Mars. By measuring group velocity dispersion along the impact-lander path, we obtained a direct constraint on crustal structure away from the InSight lander. The crust north of the equatorial dichotomy had a shear wave velocity of approximately 3.2 kilometers per second in the 5- to 30-kilometer depth range, with little depth variation. This implies a higher crustal density than inferred beneath the lander, suggesting either compositional differences or reduced porosity in the volcanic areas traversed by the surface waves. The lower velocities and the crustal layering observed beneath the landing site down to a 10-kilometer depth are not a global feature. Structural variations revealed by surface waves hold implications for models of the formation and thickness of the martian crust.

2.
Indoor Air ; 15(4): 281-90, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15982275

RESUMO

UNLABELLED: As people spend most of their time in an indoor environment, it is important to predict indoor pollutant level in order to assess health risks. As particles are an important pollutant indoors, it is of great interest to study the airflow pattern and particle dispersion in buildings. This study uses large eddy simulation (LES) to predict three-dimensional and transient turbulent flows and a Lagrangian model to compute particle trajectories in a room. The motion of three different types of solid particles in a decaying homogeneous isotropic turbulent airflow is calculated. By comparing the computed results with the experimental data from the literature, the computational method used in this investigation is found to be successful in predicting the airflow and particle trajectories in terms of the second-order statistics, such as the mean-square displacement and turbulent intensity. This Lagrangian model is then applied to the study of particles' dispersion in a ventilated cavity with a simplified geometry for two ventilation scenarios. It is shown that light particles follow the airflow in the room and many particles are exhausted, while heavier particles deposit to the floor or/and are exhausted. PRACTICAL IMPLICATIONS: The results of this paper can be used to study dispersion of infectious diseases in enclosed spaces in which virus or bacteria are often attached to particles and transported to different rooms in a building through ventilation systems. In most of studies, the virus or bacteria have been considered to be gaseous phase so there is no slip between virus/bacteria and air. The results in this paper show that heavier particles are submitted to gravity and are sensitive to the ventilation strategy.


Assuntos
Movimentos do Ar , Poluição do Ar em Ambientes Fechados/análise , Modelos Teóricos , Tamanho da Partícula , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...