Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1122445, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37206972

RESUMO

Introduction: Reforestation of degraded lands in the boreal forest is challenging and depends on the direction and strength of the plant-soil feedback (PSF). Methods: Using a gradient in tree productivity (null, low and high) from a long-term, spatially replicated reforestation experiment of borrow pits in the boreal forest, we investigated the interplay between microbial communities and soil and tree nutrient stocks and concentrations in relation to a positive PSF induced by wood mulch amendment. Results: Three levels of mulch amendment underlie the observed gradient in tree productivity, and plots that had been amended with a continuous layer of mulch 17 years earlier showed a positive PSF with trees up to 6 m tall, a closed canopy, and a developing humus layer. The average taxonomic and functional composition of the bacterial and fungal communities differed markedly betweenlow- and high-productivity plots. Trees in high-productivity plots recruited a specialized soil microbiome that was more efficient at nutrient mobilization and acquisition. These plots showed increases in carbon (C), calcium (Ca), nitrogen (N), potassium (K), and phosphorus (P) stocks and as well as bacterial and fungal biomass. The soil microbiome was dominated by taxa from the fungal genus Cortinarius and the bacterial family Chitinophagaceae, and a complex microbial network with higher connectivity and more keystone species supported tree productivity in reforested plots compared to unproductive plots. Discussion: Therefore, mulching of plots resulted in a microbially mediated PSF that enhances mineral weathering and non-symbiotic N fixation, and in turn helps transform unproductive plots into productive plots to ensure rapid restoration of the forest ecosystem in a harsh boreal environment.

2.
Ecology ; 103(9): e3739, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35488368

RESUMO

Large herbivores can exert top-down control on terrestrial plant communities, but the magnitude, direction, and scale dependency of their impacts remain equivocal, especially in temperate and boreal forests, where multiple disturbances often interact. Using a unique, long-term, and replicated landscape experiment, we assessed the influence of a high density of white-tailed deer (Odocoileus virginianus) on the spatiotemporal dynamics of diversity, composition, and successional trajectories of understorey plant assemblages in recently logged boreal forests. This experiment provided a rare opportunity to test whether deer herbivory represents a direct filter on plant communities or if it mainly acts to suppress dominant plants, which, in turn, release other plant species from strong negative plant-plant interactions. These two hypotheses make different predictions about changes in community composition and alpha and beta diversity in different vegetation layers and at different spatial scales. Our results showed that deer had strong effects on plant community composition and successional trajectories, but the resulting impacts on plant alpha and beta diversity patterns were markedly scale dependent in both time and space. Responses of tree and non-tree vegetation layers were strongly asymmetric. Deer acted both as a direct filter and as a suppressor of dominant plant species during early forest succession, but the magnitude of both processes was specific to tree and non-tree vegetation layers. Although our data supported the ungulate-driven homogenization hypothesis, compositional shifts and changes of alpha diversity were poor predictors of beta diversity loss. Our findings underscore the importance of long-term studies in revealing nonlinear temporal community trends, and they challenge managers to prioritize particular community properties and scales of interest, given contrasting trends of composition and alpha and beta diversity across spatial scales.


Assuntos
Cervos , Herbivoria , Animais , Biodiversidade , Cervos/fisiologia , Florestas , Plantas , Árvores/fisiologia
3.
Glob Chang Biol ; 24(10): 4797-4815, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29963722

RESUMO

The accumulation of soil carbon (C) is regulated by a complex interplay between abiotic and biotic factors. Our study aimed to identify the main drivers of soil C accumulation in the boreal forest of eastern North America. Ecosystem C pools were measured in 72 sites of fire origin that burned 2-314 years ago over a vast region with a range of ∆ mean annual temperature of 3°C and one of ∆ 500 mm total precipitation. We used a set of multivariate a priori causal hypotheses to test the influence of time since fire (TSF), climate, soil physico-chemistry and bryophyte dominance on forest soil organic C accumulation. Integrating the direct and indirect effects among abiotic and biotic variables explained as much as 50% of the full model variability. The main direct drivers of soil C stocks were: TSF >bryophyte dominance of the FH layer and metal oxide content >pH of the mineral soil. Only climate parameters related to water availability contributed significantly to explaining soil C stock variation. Importantly, climate was found to affect FH layer and mineral soil C stocks indirectly through its effects on bryophyte dominance and organo-metal complexation, respectively. Soil texture had no influence on soil C stocks. Soil C stocks increased both in the FH layer and mineral soil with TSF and this effect was linked to a decrease in pH with TSF in mineral soil. TSF thus appears to be an important factor of soil development and of C sequestration in mineral soil through its influence on soil chemistry. Overall, this work highlights that integrating the complex interplay between the main drivers of soil C stocks into mechanistic models of C dynamics could improve our ability to assess C stocks and better anticipate the response of the boreal forest to global change.


Assuntos
Carbono/química , Solo/química , Taiga , Clima , Ecossistema , Incêndios , Temperatura , Água
5.
J Environ Manage ; 163: 234-45, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26321533

RESUMO

Protected area networks are the dominant conservation approach that is used worldwide for protecting biodiversity. Conservation planning in managed forests, however, presents challenges when endangered species use old-growth forests targeted by the forest industry for timber supply. In many ecosystems, this challenge is further complicated by the occurrence of natural disturbance events that disrupt forest attributes at multiple scales. Using spatially explicit landscape simulation experiments, we gather insights into how these large scale, multifaceted processes (fire risk, timber harvesting and the amount of protected area) influenced both the persistence of the threatened boreal caribou and the level of timber supply in the boreal forest of eastern Canada. Our result showed that failure to account explicitly and a priori for fire risk in the calculation of timber supply led to an overestimation of timber harvest volume, which in turn led to rates of cumulative disturbances that threatened both the long-term persistence of boreal caribou and the sustainability of the timber supply itself. Salvage logging, however, allowed some compensatory cumulative effects. It minimised the reductions of timber supply within a range of ∼10% while reducing the negative impact of cumulative disturbances caused by fire and logging on caribou. With the global increase of the human footprint on forest ecosystems, our approach and results provide useful tools and insights for managers to resolve what often appear as lose-lose situation between the persistence of species at risk and timber harvest in other forest ecosystems. These tools contribute to bridge the gap between conservation and forest management, two disciplines that remain too often disconnected in practice.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Florestas , Rena , Animais , Biodiversidade , Canadá , Simulação por Computador , Incêndios
6.
PLoS One ; 8(10): e78510, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24194942

RESUMO

Many animal species exhibit broad-scale latitudinal or longitudinal gradients in their response to biotic and abiotic components of their habitat. Although knowing the underlying mechanism of these patterns can be critical to the development of sound measures for the preservation or recovery of endangered species, few studies have yet identified which processes drive the existence of geographical gradients in habitat selection. Using extensive spatial data of broad latitudinal and longitudinal extent, we tested three hypotheses that could explain the presence of geographical gradients in landscape selection of the endangered boreal woodland caribou (Rangifer tarandus caribou) during winter in Eastern Canadian boreal forests: 1) climate-driven selection, which postulates that geographic gradients are surrogates for climatic gradients; 2) road-driven selection, which proposes that boreal caribou adjust their selection for certain habitat classes as a function of proximity to roads; and 3) an additive effect of both roads and climate. Our data strongly supported road-driven selection over climate influences. Thus, direct human alteration of landscapes drives boreal caribou distribution and should likely remain so until the climate changes sufficiently from present conditions. Boreal caribou avoided logged areas two-fold more strongly than burnt areas. Limiting the spread of road networks and accounting for the uneven impact of logging compared to wildfire should therefore be integral parts of any habitat management plan and conservation measures within the range of the endangered boreal caribou. The use of hierarchical spatial models allowed us to explore the distribution of spatially-structured errors in our models, which in turn provided valuable insights for generating alternative hypotheses about processes responsible for boreal caribou distribution.


Assuntos
Distribuição Animal , Mudança Climática , Conservação dos Recursos Naturais/métodos , Ecossistema , Rena/fisiologia , Estações do Ano , Animais , Geografia , Modelos Lineares , Dinâmica Populacional , Quebeque
7.
Ecol Appl ; 21(2): 439-51, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21563575

RESUMO

Understanding how large herbivores shape plant diversity patterns is an important challenge in community ecology, especially because many ungulate populations in the northern hemisphere have recently expanded. Because species within plant communities can exhibit strong interactions (e.g., competition, facilitation), selective foraging by large herbivores is likely not only to affect the abundance of palatable species, but also to induce cascading effects across entire plant communities. To investigate these possibilities, we first tested the effects of deer browsing and soil disturbance on herbaceous plant diversity patterns in boreal forest, using standard analyses of variance. Second, we evaluated direct and indirect effects of deer browsing and soil disturbance on the small-scale richness of herbaceous taxa using a multilevel path analysis approach. The first set of analyses showed that deer browsing and soil disturbance influenced herb richness. Path analyses revealed that deer browsing and soil disturbance influenced richness via complex chains of interactions, involving dominant (i.e., the most abundant) browsing-tolerant (DBT) taxa and white birch (Betula papyrifera), a species highly preferred by white-tailed deer (Odocoileus virginianus). We found no evidence that an increase of white birch in fenced quadrats was the direct cause of a decrease in herb richness. However, we found strong evidence that a higher abundance of DBT taxa (i.e., graminoids and Circium arvense), both in fenced and unfenced quadrats, increased herb layer richness. We propose an empirical model in which competitive interactions between white birch and DBT taxa regulate the strength of facilitative relationships between the abundance of DBT taxa and herb richness. In this model, deer browsing and the intensity of soil disturbance initiate a complex chain of cascading effects in boreal plant communities by controlling the abundance of white birch.


Assuntos
Cervos/fisiologia , Ecossistema , Comportamento Alimentar/fisiologia , Plantas/classificação , Solo , Animais , Quebeque
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...