Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Dent Assoc ; 150(4S): S5-S13, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30797260

RESUMO

BACKGROUND: Stannous fluoride (SnF2) is a compound present in many commercially available dentifrices; however, oxidative decomposition negatively impacts its efficacy. Stannous oxidation is often mitigated through the addition of complexing agents or sources of sacrificial stannous compounds. The authors have found that the addition of zinc phosphate significantly improved stannous stability more effectively than other stabilization methods. The authors evaluated the chemical speciation of stannous compounds within a variety of formulations using x-ray absorption near edge spectroscopy (XANES), a technique never used before in this manner. These data were compared and correlated with several antimicrobial experiments. METHODS: XANES data of various commercially available compounds and Colgate TotalSF were performed and analyzed against a library of reference compounds to determine the tin chemical speciation. The antibacterial assays used were salivary adenosine triphosphate, short-interval kill test, plaque glycolysis, and anaerobic biofilm models. RESULTS: XANES spectra showed a diverse distribution of tin species and varying degrees of SnF2 oxidation. In vitro antimicrobial assessment indicated significant differences in performance, which may be correlated to the differences in tin speciation and oxidation state. CONCLUSIONS: Driven by the excipient ingredients, SnF2 dentifrices contain a distribution of tin species in either the SnF2 or Sn(IV) oxidation state. The addition of zinc phosphate provided significant robustness against oxidation, which directly translated to greater efficacy against bacteria. PRACTICAL IMPLICATIONS: The choice of inactive ingredients in a dentifrice with active SnF2 can dramatically impact product stability.


Assuntos
Anti-Infecciosos , Placa Dentária , Dentifrícios , Método Duplo-Cego , Humanos , Fluoretos de Estanho , Cremes Dentais
2.
J Clin Dent ; 29(Spec No A): A10-19, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30620866

RESUMO

OBJECTIVES: To investigate bioavailability enhancement of zinc on model oral surfaces and in oral biofilms in vitro through strategic formulation with two sources of zinc and L-arginine. METHODS: To modulate the bioavailability of active zinc ions in a zinc citrate dentifrice, an additive research strategy was pursued. A series of zinc citrate dentifrice formulations were prepared with increasing replacement of zinc citrate with zinc oxide (a water insoluble source of zinc ions) to generate a Dual Zinc active system. A screening of isolated zinc and amino acid effects in simple solutions using zeta potential and uptake to model oral surfaces was performed in an effort to determine the effect of particle charge on zinc bioavailability. Zinc delivery and antibacterial efficacy of the Dual Zinc plus Arginine dentifrice formula were tested using in vitro oral epithelial tissue and saliva-derived biofilm models. Furthermore, zinc penetration and retention were determined by subjecting in vitro biofilms to dynamic flow after treatment with the Dual Zinc plus Arginine dentifrice with treated biofilms evaluated for zinc using imaging mass spectrometry (I-MS). Bacterial adhesion to gingival epithelial cells treated with the Dual Zinc plus Arginine dentifrice was imaged upon challenging with Streptococcus gordonii. RESULTS: Addition of zinc oxide into a zinc citrate dentifrice formula enhanced the efficacy of the system against anaerobic biofilms in a concentration- dependent manner. L-arginine further provided a significant positive charge (+36 mV) to the zinc oxide suspension (+16 mV) as measured by zeta potential. Simple solutions of the Dual Zinc active showed increased zinc uptake on model oral surfaces as a direct function of L-arginine concentration. Antibacterial efficacy of a Dual Zinc plus Arginine dentifrice was evaluated through multiple mechanisms. Enhanced antibacterial performance was observed through significant reductions in metabolic activity as measured through bacterial glycolytic function (p = 0.0001) and total oxygen consumption (p = 0.0001). Greater penetration and retention of zinc was observed in bacterial biofilms treated with the Dual Zinc plus Arginine dentifrice in comparison to treatment with a Dual Zinc dentifrice after twelve hours of dynamic flow (10 mL/hour) in an in vitro drip flow biofilm culture. Confocal microscopy showed adherent bacteria on cheek cells treated with the Dual Zinc plus Arginine dentifrice formula. CONCLUSIONS: The combination of zinc citrate, zinc oxide, and the amino acid L-arginine in a dentifrice formula enhances the bioavailability of zinc to model oral tissue surfaces, resulting in unique physicochemical effects. The significant antimicrobial control associated with the Dual Zinc plus Arginine dentifrice provides a unique vehicle toward achieving whole mouth health.


Assuntos
Placa Dentária , Dentifrícios , Zinco , Arginina , Disponibilidade Biológica , Placa Dentária/prevenção & controle , Dentifrícios/farmacocinética , Humanos , Zinco/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...