Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37837170

RESUMO

There is a worldwide need to improve blood pressure (BP) measurement error in order to correctly diagnose hypertension. Cardiovascular diseases cause 17.9 million deaths annually and are a substantial monetary strain on healthcare. The current measurement uncertainty of 3 mmHg should be improved upon. Dynamic pressure measurement standards are lacking or non-existing. In this study we propose a novel method of measuring air pressure inside the sphygmomanometer tubing during BP measurement using a condenser microphone. We designed, built, and tested a system that uses a radiofrequency (RF) modulation method to convert changes in capacitance of a condenser microphone into pressure signals. We tested the RF microphone with a low-frequency (LF) sound source, BP simulator and using a piezoresistive pressure sensor as a reference. Necessary tests were conducted to assess the uncertainty budget of the system. The RF microphone prototype has a working frequency range from 0.5 Hz to 280 Hz in the pressure range from 0 to 300 mmHg. The total expanded uncertainty (k = 2, p = 95.5%) of the RF microphone was 4.32 mmHg. The proposed method could establish traceability of BP measuring devices to acoustic standards described in IEC 61094-2 and could also be used in forming dynamic BP standards.


Assuntos
Determinação da Pressão Arterial , Hipertensão , Humanos , Esfigmomanômetros , Hipertensão/diagnóstico , Som , Acústica , Pressão Sanguínea
2.
Sensors (Basel) ; 20(5)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164306

RESUMO

When designing a single tube practical acoustic thermometer (PAT), certain considerations should be addressed for optimal performance. This paper is concerned with the main issues involved in building a reliable PAT. It has to be emphasised that a PAT measures the ratio of the time delay between the single temperature calibration point (ice point) and any other temperature. Here, we present different models of the speed of sound in tubes, including the effects of real gases and an error analysis of the most accurate model with a Monte Carlo simulation. Additionally, we introduce the problem of acoustic signal overlap and some possible solutions, one of which is acoustic signal cancellation, which aims to eliminate the unwanted parts of an acoustic signal, and another is to optimize the tube length for the parameters of the gas used and specific temperature range.

3.
Sensors (Basel) ; 17(11)2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29144400

RESUMO

The object of the proposed paper is to design and analyze the performance of a non-contact heart rate variability (HRV) measuring device based on ultrasound transducers. The rationale behind non-contact HRV measurement is the goal of obtaining a means of long term monitoring of a patient's heart performance. Due to its complexity as a non-contact measuring device, influential physical quantities, error source and other perturbations were thoroughly investigated. For medical purposes it is of utmost importance to define the target uncertainty of a measuring method from the side of physicians, while it is the role of scientists to realistically evaluate all uncertainty contributions. Within this paper we present a novelty method of non-contact HRV measurement based on ultrasound transducers operating at two frequencies simultaneously. We report laboratory results and clinical evaluations are given for healthy subjects as well as patients with known heart conditions. Furthermore, laboratory tests were conducted on subjects during a relaxation period, and after 1 min physical activity.


Assuntos
Frequência Cardíaca , Exercício Físico , Humanos
4.
IEEE Trans Biomed Eng ; 62(10): 2535-43, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26389644

RESUMO

GOAL: We aimed to develop a system for controlled exposure of biological samples to conditions they experience when lightning strikes their habitats. METHODS: We based the generator on a capacitor charged via a bridge rectifier and a dc-dc converter, and discharged via a relay, delivering arcs similar to natural lightning strokes in electric current waveform and similarly accompanied by acoustic shock waves. We coupled the generator to our exposure chamber described previously, measured electrical and acoustic properties of arc discharges delivered, and assessed their ability to inactivate bacterial spores. RESULTS: Submicrosecond discharges descended vertically from the conical emitting electrode across the air gap, entering the sample centrally and dissipating radially toward the ring-shaped receiving electrode. In contrast, longer discharges tended to short-circuit the electrodes. Recording at 341 000 FPS with Vision Research Phantom v2010 camera revealed that initial arc descent was still vertical, but became accompanied by arcs leaning increasingly sideways; after 8-12 µs, as the first of these arcs formed direct contact with the receiving electrode, it evolved into a channel of plasmified air and short-circuited the electrodes. We eliminated this artefact by incorporating an insulating cylinder concentrically between the electrodes, precluding short-circuiting between them. While bacterial spores are highly resistant to electric pulses delivered through direct contact, we showed that with arc discharges accompanied by an acoustic shock wave, spore inactivation is readily obtained. CONCLUSION: The presented system allows scientific investigation of effects of arc discharges on biological samples. SIGNIFICANCE: This system will allow realistic experimental studies of lightning-triggered horizontal gene transfer and assessment of its role in evolution.


Assuntos
Transferência Genética Horizontal/efeitos da radiação , Raio , Modelos Teóricos , Pesquisa/instrumentação , Esporos Bacterianos/efeitos da radiação , Bacillus/efeitos da radiação , Eletricidade , Desenho de Equipamento , Som
5.
J Magn Reson ; 247: 22-30, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25233110

RESUMO

A low frequency (0.5-5 MHz) battery operated sensitive pulsed NQR spectrometer with a transmitter power up to 5 W and a total mass of about 3 kg aimed at detecting (14)N NQR signals, predominantly of illicit materials, was designed and assembled. This spectrometer uses a standard software defined radio (SDR) platform for the data acquisition unit. Signal processing is done with the LabView Virtual instrument on a personal computer. We successfully tested the spectrometer by measuring (14)N NQR signals from aminotetrazole monohydrate (ATMH), potassium nitrate (PN), paracetamol (PCM) and trinitrotoluene (TNT). Such a spectrometer is a feasible component of a portable single or multichannel (14)N NQR based detection device.

6.
Neuroimage ; 89: 143-51, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24185014

RESUMO

Atomic magnetometers are emerging as an alternative to SQUID magnetometers for detection of biological magnetic fields. They have been used to measure both the magnetocardiography (MCG) and magnetoencephalography (MEG) signals. One of the virtues of the atomic magnetometers is their ability to operate as a multi-channel detector while using many common elements. Here we study two configurations of such a multi-channel atomic magnetometer optimized for MEG detection. We describe measurements of auditory evoked fields (AEF) from a human brain as well as localization of dipolar phantoms and auditory evoked fields. A clear N100m peak in AEF was observed with a signal-to-noise ratio of higher than 10 after averaging of 250 stimuli. Currently the intrinsic magnetic noise level is 4fTHz(-1/2) at 10Hz. We compare the performance of the two systems in regards to current source localization and discuss future development of atomic MEG systems.


Assuntos
Encéfalo/fisiologia , Magnetoencefalografia/instrumentação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...