Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Oper Res ; 304(1): 99-112, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35039709

RESUMO

The health and economic devastation caused by the COVID-19 pandemic has created a significant global humanitarian disaster. Pandemic response policies guided by geospatial approaches are appropriate additions to traditional epidemiological responses when addressing this disaster. However, little is known about finding the optimal set of locations or jurisdictions to create policy coordination zones. In this study, we propose optimization models and algorithms to identify coordination communities based on the natural movement of people. To do so, we develop a mixed-integer quadratic-programming model to maximize the modularity of detected communities while ensuring that the jurisdictions within each community are contiguous. To solve the problem, we present a heuristic and a column-generation algorithm. Our computational experiments highlight the effectiveness of the models and algorithms in various instances. We also apply the proposed optimization-based solutions to identify coordination zones within North Carolina and South Carolina, two highly interconnected states in the U.S. Results of our case study show that the proposed model detects communities that are significantly better for coordinating pandemic related policies than the existing geopolitical boundaries.

2.
Risk Anal ; 42(1): 206-220, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33580512

RESUMO

The worldwide healthcare and economic crisis caused by the COVID-19 pandemic highlights the need for a deeper understanding of investing in the mitigation of epidemic risks. To address this, we built a mathematical model to optimize investments into two types of measures for mitigating the risks of epidemic propagation: prevention/containment measures and treatment/recovery measures. The new model explicitly accounts for the characteristics of networks of individuals, as a critical element of epidemic propagation. Subsequent analysis shows that, to combat an epidemic that can cause significant negative impact, optimal investment in either category increases with a higher level of connectivity and intrinsic loss, but it is limited to a fraction of that total potential loss. However, when a fixed and limited mitigation investment is to be apportioned among the two types of measures, the optimal proportion of investment for prevention and containment increases when the investment limit goes up, and when the network connectivity decreases. Our results are consistent with existing studies and can be used to properly interpret what happened in past pandemics as well as to shed light on future and ongoing events such as COVID-19.


Assuntos
COVID-19/epidemiologia , Pandemias/prevenção & controle , Quarentena/organização & administração , SARS-CoV-2 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...