Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Int J Pharm ; : 124258, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38782152

RESUMO

Blindness in the elderly is often caused by age-related macular degeneration (AMD). The advanced type of AMD known as neovascular AMD (nAMD) has been linked to being the predominant cause of visual impairment in these people. Multiple neovascular structures including choroidal neovascular (CNV) membranes, fluid exudation, hemorrhages, and subretinal fibrosis, are diagnostic of nAMD. These pathological alterations ultimately lead to anatomical and visual loss. It is known that vascular endothelial growth factor (VEGF), a type of proangiogenic factor, mediates the pathological process underlying nAMD. Therefore, various therapies have evolved to directly target the disease. In this review article, an attempt has been made to discuss general explanations about this disease, all common treatment methods based on anti-VEGF drugs, and the use of drug delivery systems in the treatment of AMD. Initially, the pathophysiology, angiogenesis, and different types of AMD were described. Then we described current treatments and future treatment prospects for AMD and outlined the advantages and disadvantages of each. In this context, we first examined the types of therapeutic biomolecules and anti-VEGF drugs that are used in the treatment of AMD. These biomolecules include aptamers, monoclonal antibodies, small interfering RNAs, microRNAs, peptides, fusion proteins, nanobodies, and other therapeutic biomolecules. Finally, we described drug delivery systems based on liposomes, nanomicelles, nanoemulsions, nanoparticles, cyclodextrin, dendrimers, and composite vehicles that are used in AMD therapy.

2.
Curr Pharm Des ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38584554

RESUMO

BACKGROUND: Targeted cancer therapy can be considered as a new strategy to overcome the side effects of current cancer treatments. Neuropilin-1 (NRP-1) is a transmembrane glycoprotein that is expressed in endothelial cells and tumor vessels to stimulate angiogenesis progression. Targeted diphtheria toxin (DT)- based therapeutics are promising tools for cancer treatment. This study aimed to construct a novel NRP-1 binding peptide (as three repeats) (CRGDK) as a fusion to truncated DT (DTA) (DTA-triCRGDK) for targeted delivery of DT into NRP-1 expressing cells. METHODS: The concept of DTA-triCRGDK was designed, synthesized and cloned into the bacterial host. Expression of DTA-triCRGDK was induced by Isopropyl ß-D-1-thiogalactopyranoside (IPTG) and purification was performed using Ni-NTA chromatography. Biological activity of DTA-triCRGDK was evaluated using MTT, apoptosis, and wound healing assays. In addition, expression levels of apoptotic Bax, Bcl2, and Casp3 genes were determined by Real-time PCR. RESULTS: Cytotoxicity analysis showed the IC50 values of DTA-triCRGDK for A549 and MRC5 were 0.43 nM and 4.12 nM after 24h, respectively. Bcl2 expression levels decreased 0.4 and 0.72 fold in A549 and MRC5, respectively. However, Bax and Casp3 expression level increased by 6.75 and 8.19 in A549 and 2.51 and 3.6 in MRC5 cells. CONCLUSION: Taken together, DTA-triCRGDK is a promising tool for targeted therapy of NRP-1 overexpressing cancer cells.

3.
Curr Pharm Des ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38482625

RESUMO

BACKGROUND: Interleukin 2 (IL-2) is a vital cytokine in the induction of T and NK cell responses, the proliferation of CD8+ T cells, and the effective treatment of human cancers, such as melanoma and renal cell carcinoma. However, widespread use of this cytokine is limited due to its short half-life, severe toxicity, lack of specific tumor targeting, and activation of Treg cells mediated by high-affinity interleukin-2 receptors. OBJECTIVE: In this study, a tumor-targeting LIV-1 VHH-mutIL2 immunocytokine with reduced CD25 (α chain of the high-affinity IL-2 receptor) binding activity was developed to improve IL-2 half-life by decreasing its renal infiltration in comparison with wild and mutant IL-2 molecules. METHODS: The recombinant immunocytokine was designed and expressed. the biological activity of the purified fusion protein was investigated in in vitro and in vivo experiments. RESULTS: The fusion protein represented specific binding to MCF7 (the breast cancer cell line) and more efficient cytotoxicity than wild-type IL-2 and mutant IL-2. the PK parameters of the recombinant immunocytokine were also improved in comparison to the IL-2 molecules. CONCLUSION: The observed results showed that LIV1-mIL2 immunocytokine could be considered an effective agent in the LIV-1-targeted treatment of cancers due to its longer half-life and stronger cytotoxicity.

4.
Toxicon ; 241: 107673, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432612

RESUMO

BACKGROUND: Development of promising medicines from natural sources, specially venom, is of highly necessitated to combat against life-threatening cancers. Non-small cell lung cancer (NSCLC) has a significant percentage of mortalities. Melittin, from bee venom, is a potent anticancer peptide but its toxicity has limited its therapeutic applications. Accordingly, this study aims to synthesize niosomes with suitable stability and capacity for carrying melittin as a drug. Additionally, it seeks to evaluate the anti-cancer activity of melittin-loaded niosomes on non-small cell lung cancer. METHODS: The niosome was prepared by thin film hydration method. Cytotoxicity and apoptosis were assessed on A549, Calu-3, and MRC5 cells. Real-time PCR was used to determine expression of apoptotic and pro-apoptotic Bax, Bcl2, and Casp3 genes. Immunocytochemistry (ICC) was also used to confirm expression of the abovementioned genes. Furthermore, wound healing assay was performed to compare inhibition effects of melittin-loaded niosomes with free melittin on migration of cancer cells. RESULTS: IC50 values of melittin-loaded niosomes for A549, Calu-3, and MRC5 cells were respectively 0.69 µg/mL, 1.02 µg/mL, and 2.56 µg/mL after 72 h. Expression level of Bax and Casp3 increased '10 and 8' and '9 and 10.5' fold in A549 and Calu-3, whereas Bcl2 gene expression decreased 0.19 and 0.18 fold in the mentioned cell lines. The cell migration inhibited by melittin-loaded niosomes. CONCLUSIONS: Melittin-loaded niosomes had more anti-cancer effects and less toxicity on normal cells than free melittin. Furthermore, it induced apoptosis and inhibited cancer cells migration. Our results showed that melittin-loaded niosomes may be a drug lead and it has the potential to be future developed for lung cancer treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Meliteno/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Lipossomos , Caspase 3 , Proteína X Associada a bcl-2/genética , Neoplasias Pulmonares/tratamento farmacológico
5.
AMB Express ; 14(1): 19, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38337114

RESUMO

The immunotherapeutic application of interleukin-2 (IL-2) in cancer treatment is limited by its off-target effects on different cell populations and insufficient activation of anti-tumor effector cells at the site of the tumor upon tolerated doses. Targeting IL-2 to the tumor microenvironment by generating antibody-cytokine fusion proteins (immunocytokine) would be a promising approach to increase efficacy without associated toxicity. In this study, a novel nanobody-based immunocytokine is developed by the fusion of a mutant (m) IL-2 with a decreased affinity toward CD25 to an anti-vascular endothelial growth factor receptor-2 (VEGFR2) specific nanobody, denoted as VGRmIL2-IC. The antigen binding, cell proliferation, IFN-γ-secretion, and cytotoxicity of this new immunocytokine are evaluated and compared to mIL-2 alone. Furthermore, the pharmacokinetic properties are analyzed. Flow cytometry analysis shows that the VGRmIL2-IC molecule can selectively target VEGFR2-positive cells. The results reveal that the immunocytokine is comparable to mIL-2 alone in the stimulation of Primary Peripheral Blood Mononuclear Cells (PBMCs) and cytotoxicity in in vitro conditions. In vivo studies demonstrate improved pharmacokinetic properties of VGRmIL2-IC in comparison to the wild or mutant IL-2 proteins. The results presented here suggest VGRmIL2-IC could be considered a candidate for the treatment of VEGFR2-positive tumors.

6.
BMC Biotechnol ; 24(1): 1, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178096

RESUMO

BACKGROUND: The chimeric antigen receptor-expressing T (CAR-T) cells for cancer immunotherapy have obtained considerable clinical importance. CAR T cells need an optimized intracellular signaling domain to get appropriately activated and also for the proper antigen recognition, the length and composition of the extracellular spacer are critical factors. RESULTS: We constructed two third-generation nanobody-based VEGFR2-CARs containing either IgG1 hinge-CH2-CH3 region or hinge-only as long or short extracellular spacers, respectively. Both CARs also contained intracellular activating domains of CD28, OX40, and CD3ζ. The T cells from healthy individuals were transduced efficiently with the two CARs, and showed increased secretion of IL-2 and IFN-γ cytokines, and also CD69 and CD25 activation markers along with cytolytic activity after encountering VEGFR2+ cells. The VEGFR2-CAR T cells harboring the long spacer showed higher cytokine release and CD69 and CD25 expression in addition to a more efficient cytolytic effect on VEGFR2+ target cells. CONCLUSIONS: The results demonstrated that the third-generation anti-VEGFR2 nanobody-based CAR T cell with a long spacer had a superior function and potentially could be a better candidate for solid tumor treatment.


Assuntos
Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T , Humanos , Imunoterapia Adotiva/métodos , Linhagem Celular Tumoral , Linfócitos T , Citocinas
7.
Artigo em Inglês | MEDLINE | ID: mdl-38275046

RESUMO

BACKGROUND AND OBJECTIVE: Snakebite envenoming is a serious public health issue causing more than 135,000 annual deaths worldwide. Naja naja oxiana is one of the most clinically important venomous snakes in Iran and Central Asia. Conventional animal-derived polyclonal antibodies are the major treatment of snakebite envenoming. Characterization of venom components helps to pinpoint the toxic protein responsible for clinical manifestations in victims, which aids us in developing efficient antivenoms with minimal side effects. Therefore, the present study aimed to identify the major lethal protein of Naja naja oxiana by top-down proteomics. METHODS: Venom proteomic profiling was performed using gel filtration (GF), reversed-phase (RP) chromatography, and intact mass spectrometry. The toxicity of GF-, and RP-eluted fractions was analyzed in BALB/c mice. The rabbit polyclonal antisera were produced against crude venom, GF fraction V (FV), and RP peak 1 (CTXP) and applied in neutralization assays. RESULTS: Toxicity studies in BALB/c identified FV as the major toxic fraction of venom. Subsequently, RP separation of FV resulted in eight peaks, of which peak 1, referred to as "CTXP" (cobra toxin peptide), was identified as the major lethal protein. In vivo neutralization assays using rabbit antisera showed that polyclonal antibodies raised against FV and CTXP are capable of neutralizing at least 2-LD50s of crude venom, FV, and CTXP in all tested mice. CONCLUSION: Surprisingly, the Anti-CTXP antibody could neutralize 8-LD50 of the CTXP peptide. These results identified CTXP (a 7 kDa peptide) as a potential target for the development of novel efficient antivenom agents.

8.
Mol Cell Biochem ; 479(3): 579-590, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37129769

RESUMO

Antibody drug conjugates (ADCs) with twelve FDA approved drugs, known as a novel category of anti-neoplastic treatment created to merge the monoclonal antibody specificity with cytotoxicity effect of chemotherapy. However, despite many undeniable advantages, ADCs face certain problems, including insufficient internalization after binding, complex structures and large size of full antibodies especially in targeting of solid tumors. Camelid single domain antibody fragments (Nanobody®) offer solutions to this challenge by providing nanoscale size, high solubility and excellent stability, recombinant expression in bacteria, in vivo enhanced tissue penetration, and conjugation advantages. Here, an anti-human CD22 Nanobody was expressed in E.coli cells and conjugated to Mertansine (DM1) as a cytotoxic payload. The anti-CD22 Nanobody was expressed and purified by Ni-NTA resin. DM1 conjugated anti-CD22 Nanobody was generated by conjugation of SMCC-DM1 to Nanobody lysine groups. The conjugates were characterized using SDS-PAGE and Capillary electrophoresis (CE-SDS), RP-HPLC, and MALDI-TOF mass spectrometry. Additionally, flow cytometry analysis and a competition ELISA were carried out for binding evaluation. Finally, cytotoxicity of conjugates on Raji and Jurkat cell lines was assessed. The drug-to-antibody ratio (DAR) of conjugates was calculated 2.04 using UV spectrometry. SDS-PAGE, CE-SDS, HPLC, and mass spectrometry confirmed conjugation of DM1 to the Nanobody. The obtained results showed the anti-CD22 Nanobody cytotoxicity was enhanced almost 80% by conjugation with DM1. The binding of conjugates was similar to the non-conjugated anti-CD22 Nanobody in flow cytometry experiments. Concludingly, this study successfully suggest that the DM1 conjugated anti-CD22 Nanobody can be used as a novel tumor specific drug delivery system.


Assuntos
Imunoconjugados , Maitansina , Neoplasias , Anticorpos de Domínio Único , Anticorpos Monoclonais/farmacologia , Antineoplásicos/imunologia , Linhagem Celular Tumoral , Imunoconjugados/química , Imunoconjugados/uso terapêutico , Maitansina/química , Neoplasias/tratamento farmacológico , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Camelidae/imunologia
9.
Prep Biochem Biotechnol ; 54(3): 307-316, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37452673

RESUMO

Inhibition of FGFR2 signaling is promising in targeted therapy of FGFR2-related tumors. In this study, anti-FGFR2 nanobodies (Nbs) were isolated through screening of an immune camelid phage display library. Four rounds of biopanning were carried out with commercial human FGFR2 antigen and enrichment was assessed by ELISA and phage titration. The gene of Nb was sub-cloned into the expression vector, and the recombinant vector was transformed into Escherichia coli WK6 cells. The recombinant protein was purified using Ni-NTA affinity chromatography. The anti-FGFR2 Nb (C13) was characterized by SDS-PAGE, western blotting, competitive inhibition ELISA, flow cytometry, MTT, and migration assay. C13 Nb recognized FGFR2 with high specificity and no cross-reactivity was observed with other tested antigens. The affinity of C13 Nb was calculated to be 1.5 × 10-9 M. Results of cytotoxicity showed that C13 Nb (10 µg/ml) inhibited 85% of the proliferation of T-47D cells (p < 0.001). In addition, C13 inhibited the migration of 68% of T-47D toward the source of the growth factor (p < 0.01). The flow cytometry showed that C13 Nb bound to the surface of FGFR2+ cells, T-47D cell line (96%). Results indicate the potential of anti-FGFR2 Nb for targeted therapy of FGFR2-overexpressing tumors after complementary investigations.


Assuntos
Bacteriófagos , Neoplasias , Humanos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Bioprospecção , Western Blotting , Escherichia coli/genética
10.
Curr Pharm Des ; 29(29): 2336-2344, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37859326

RESUMO

BACKGROUND: Programmed cell death protein 1 (PD-1) is a membrane receptor that is expressed on the surface of various immune cells, such as T cells, B cells, monocytes, natural killer T cells, and dendritic cells. In cancer, the interaction between PD-1 and its ligand PD-L1 suppresses the activation and function of T lymphocytes, leading to the impairment and apoptosis of tumor-specific T cells. This mechanism allows cancer cells to evade the immune response and promotes tumor progression. METHODS: Recombinant PD-1 protein was produced and used to immunize a camel. A nanobody library was generated from the camel's peripheral blood lymphocytes and screened for PD-1 binding. A specific nanobody (3PD9) was selected and characterized by affinity measurement, western blotting, and flow cytometry analysis. The ability of the selected nanobody to block the inhibitory signal of PD-1 in peripheral blood mononuclear cells (PBMCs) was evaluated by measuring the level of interleukin-2 (IL-2). RESULTS: The selected nanobody showed high specificity and affinity for human PD-1. Western blot and flow cytometry analysis confirmed that 3PD9 could recognize and bind to human PD-1 on the cell surface. It was demonstrated that the level of IL-2 was significantly increased in PBMCs treated with 3PD9 compared to the control group, indicating that the nanobody could enhance the T cell response by disrupting the PD-1/PD-L1 interaction. CONCLUSION: The results suggested that the anti-PD-1 nanobody could be a promising candidate for cancer immunotherapy.


Assuntos
Antígeno B7-H1 , Neoplasias , Animais , Humanos , Receptor de Morte Celular Programada 1 , Inibidores de Checkpoint Imunológico , Interleucina-2 , Leucócitos Mononucleares/metabolismo , Camelus/metabolismo , Neoplasias/tratamento farmacológico , Proteínas Reguladoras de Apoptose
11.
Vet Res Forum ; 14(6): 323-328, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37383651

RESUMO

Programmed death ligand-1 (PD-L1, CD274 and B7-H1) has been described as a ligand for immune inhibitory receptor programmed death protein 1 (PD-1). With binding to PD-1 on activated T cells, PD-L1 can prevent T cell responses via motivating apoptosis. Consequently, it causes cancers immune evasion and helps the tumor growth; hence, PD-L1 is regarded as a therapeutic target for malignant cancers. The anti-PD-L1 monoclonal antibody targeting PD-1/PD-L1 immune checkpoint has attained remarkable outcomes in clinical application and has turned to one of the most prevalent anti-cancer drugs. The present study aimed to develop polyclonal heavy chain antibodies targeting PD-L1via Camelus dromedarius immunization. The extra-cellular domain of human PD-L1 (hPD-L1) protein was cloned, expressed, and purified. Afterwards, this recombinant protein was utilized as an antigen for camel immunization to acquire polyclonal camelid sera versus this protein. Our outcomes showed that hPD-L1 protein was effectively expressed in the prokaryotic system. The antibody-based techniques, such as enzyme-linked immunosorbent assay, western blotting, and flow cytometry displayed that the hPD-L1 protein was detected by generated polyclonal antibody. Due to the advantages of multi-epitope-binding ability, our study exhibited that camelid antibody is effective to be applied significantly for detection of PD-L1 protein in essential antibody-based studies.

12.
Curr Pharm Des ; 29(13): 1059-1066, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37078346

RESUMO

BACKGROUND: EpCAM and VEGFR2 play an important role in angiogenesis and tumorigenesis. It is currently of paramount importance to produce new drugs that can inhibit the angiogenesis and proliferation of tumor cells. Nanobodies are potential drug candidates for cancer therapy due to their unique properties. OBJECTIVE: This study aimed to investigate the combined inhibitory effect of anti-EpCAM and anti-VEGFR2 nanobodies in cancer cell lines. METHODS: Inhibitory activity of anti-EpCAM and anti-VEGFR2 nanobodies on MDA-MB231, MCF7, and HUVEC cells was investigated using both in vitro (MTT, migration, and tube formation assays) and in vivo assays. RESULTS: Results showed that the combination of anti-EpCAM and anti-VEGFR2 nanobodies efficiently inhibited proliferation, migration, and tube formation of MDA-MB-231 cells compared to each individual nanobodies (p < 0.05). In addition, the combination of anti-EpCAM and anti-VEGFR2 nanobodies efficiently inhibited tumor growth and volume of Nude mice bearing MDA-MB-231 cells (p < 0.05). CONCLUSION: Taken together, the results indicate the potential of combination therapy as an efficient approach to cancer therapy.


Assuntos
Neoplasias , Anticorpos de Domínio Único , Camundongos , Animais , Humanos , Anticorpos de Domínio Único/farmacologia , Camundongos Nus , Transdução de Sinais , Neovascularização Patológica/tratamento farmacológico , Neoplasias/tratamento farmacológico , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proliferação de Células , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Linhagem Celular Tumoral
13.
Mol Biotechnol ; 65(12): 1968-1978, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36906729

RESUMO

As a member of the tumor necrosis factor (TNF) superfamily, the B-cell activating factor (BAFF) plays a crucial role in B-cell survival and differentiation. Overexpression of this protein has been closely linked to autoimmune disorders and some B-cell malignancies. Using monoclonal antibodies (mAbs) against the BAFF soluble domain appears to be a complementary treatment for some of these diseases. This study aimed to produce and develop a specific Nanobody (Nb), a variable camelid antibody domain, against the soluble domain of BAFF protein. After camel immunization with recombinant protein and preparing cDNA from total RNAs separated from camel lymphocytes, an Nb library was developed. Individual colonies capable of binding selectively to rBAFF were obtained by periplasmic-ELISA, sequenced, and expressed in a bacterial expression system. The specificity and affinity of selected Nb were determined and its target identification and functionality were evaluated using flow cytometry.


Assuntos
Fator Ativador de Células B , Camelus , Animais , Fator Ativador de Células B/genética , Interleucina-4 , Linfócitos B , Anticorpos Monoclonais/genética
14.
Cell J ; 25(1): 62-72, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36680485

RESUMO

OBJECTIVE: Despite of antiviral drugs and successful treatment, an effective vaccine against hepatitis C virus (HCV) infection is still required. Recently, bioinformatic methods same as prediction algorithms, have greatly contributed to the use of peptides in the design of immunogenic vaccines. Therefore, finding more conserved sites on the surface glycoproteins (E1 and E2) of HCV, as major targets to design an effective vaccine against genetically different viruses in each genotype was the goal of the study. MATERIALS AND METHODS: In this experimental study, 100 entire sequences of E1 and E2 were retrieved from the NCBI website and analyzed in terms of mutations and critical sites by Bioedit 7.7.9, MEGA X software. Furthermore, HCV-1a samples were obtained from some infected people in Iran, and reverse transcriptase-polymerase chain reaction (RTPCR) assay was optimized to amplify their E1 and E2 genes. Moreover, all three-dimensional structures of E1 and E2 downloaded from the PDB database were analyzed by YASARA. In the next step, three interest areas of humoral immunity in the E2 glycoprotein were evaluated. OSPREY3.0 protein design software was performed to increase the affinity to neutralizing antibodies in these areas. RESULTS: We found the effective in silico binding affinity of residues in three broadly neutralizing epitopes of E2 glycoprotein. First, positions that have substitution capacity were detected in these epitopes. Furthermore, residues that have high stability for substitution in these situations were indicated. Then, the mutants with the strongest affinity to neutralize antibodies were predicted. I414M, T416S, I422V, I414M-T416S, and Q412N-I414M-T416S substitutions theoretically were exhibited as mutants with the best affinity binding. CONCLUSION: Using an innovative filtration strategy, the residues of E2 epitopes which have the best in silico binding affinity to neutralizing antibodies were exhibited and a distinct peptide library platform was designed.

15.
Mol Biotechnol ; 65(4): 637-644, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36129635

RESUMO

Epithelial Cell Adhesion Molecule (EpCAM) is overexpressed in a variety of cancers such as colon, stomach, pancreas, and prostate adenocarcinomas. Inhibition of EpCAM is considered as a potential target for cancer therapy. In current study, anti-EpCAM immunotoxin (α-EpCAM IT) was developed using genetic fusion of α-EpCAM single domain antibody (nanobody) (α-EpCAM Nb) to truncated form of diphtheria toxin. The expression of recombinant α-EpCAM IT was induced by Isopropyl ß-d-1-thiogalactopyranoside (IPTG) and confirmed by SDS-PAGE and western blot. Recombinant α-EpCAM IT was purified from the inclusion bodies and refolded using urea gradient procedure. The cytotoxicity and apoptosis activity of α-EpCAM IT on EpCAM over-expressing (MCF7), low-expressing (HEK293), and no-expressing (HUVEC) cells were evaluated by 3-4,5-Dimethylthiazol-2-yl (MTT) assay and annexin V-FITC-PI assay as well. In addition, anti-tumor activity of α-EpCAM IT was evaluated on nude mice bearing MCF7 tumor cells. Results showed success expression and purification of α-EpCAM IT. The α-EpCAM IT showed time and dose-dependent anti-proliferative activity on MCF-7 cells. However, α-EpCAM IT did not show any anti-proliferative activity on HEK293 and HUVEC cells as well. In addition, the annexin V-FITC-PI assay results showed that α-EpCAM IT significantly increased apoptotic rate in MCF-7 cells with no effect on HEK293 and HUVEC as well. Moreover, α-EpCAM IT significantly reduced tumor size in vivo study. The achieved results indicate the potential of designing α-EpCAM IT as a novel therapeutic for cancer therapy.


Assuntos
Imunotoxinas , Anticorpos de Domínio Único , Masculino , Animais , Camundongos , Humanos , Molécula de Adesão da Célula Epitelial/genética , Imunotoxinas/genética , Imunotoxinas/farmacologia , Toxina Diftérica/genética , Toxina Diftérica/farmacologia , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Camundongos Nus , Células HEK293 , Linhagem Celular Tumoral
16.
Immunopharmacol Immunotoxicol ; 45(2): 197-202, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36193665

RESUMO

OBJECTIVE: Immunotherapy using monoclonal antibodies targeting programmed death ligand-1 (PD-L1) on cancer cells as a biomarker of escape from response to immune checkpoint has demonstrated efficacy in treating many solid tumors. In addition, some of the signals, such as vascular endothelial growth factor (VEGF), bind to receptors on the surface of normal endothelial cells and encourage angiogenesis, or the formation and survival of new blood vessels. METHODS: Due to the special features of nanobodies with high specificity and affinity as a powerful new tool in cancer therapy, here, a recombinant bispecific bivalent anti-PD-L1/VEGF nanobody was constructed and its functionality in inhibition of angiogenesis in vitro was investigated. RESULTS: Results demonstrated that bivalent anti-PD-L1/VEGF nanobody efficiently inhibited HUVEC and A431 cells proliferation and tube formation. In addition, bivalent anti-PD-L1/VEGF nanobody efficiently inhibited angiogenesis in an ex ovo Chick Chorioallantoic Membrane assay. DISCUSSION: The results indicate for the potential of bivalent anti-PD-L1/VEGF nanobody as a novel promising tool for cancer therapy.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Humanos , Fator A de Crescimento do Endotélio Vascular , Células Endoteliais , Anticorpos Monoclonais/farmacologia , Anticorpos Biespecíficos/farmacologia
17.
Prep Biochem Biotechnol ; 53(5): 523-531, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35984637

RESUMO

Neuropilin-1 (NRP-1) is a non-tyrosine kinase receptor and when overexpressed, leads to angiogenesis. High expression of NRP-1 has been observed in various cancers. Unique characteristic of nanobodies (small size, high affinity and stability, and ease production) make them potential therapeutic tools. Oligoclonal nanobodies which detect multiple functional epitopes on the target antigen could be potential tools for inhibition of cancer resistance problems due to escape variant of tumor cells. In this study, oligoclonal anti-NRP-1 nanobodies were selected from camel immune library and their binding activities as well as in vitro functionality were evaluated. Anti-NRP-1 nanobodies were expressed in an Escherichia coli host, and purified using nickel affinity chromatography. The effect of each individual and oligoclonal nanobodies on human endothelial cells were evaluated by MTT, Tube formation, and migration assay as well. Results showed that oligoclonal anti-NRP-1 nanobodies detected different epitopes of NRP-1 antigen and inhibited in vitro angiogenesis of human endothelial cells better than each individual nanobody. Results indicate promising oligoclonal anti-NRP-1 nanobodies for inhibition of angiogenesis.


Assuntos
Neoplasias , Anticorpos de Domínio Único , Humanos , Epitopos , Células Endoteliais , Neuropilinas
18.
Mol Biotechnol ; 65(5): 766-773, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36203034

RESUMO

Angiogenesis, the formation of new vessels, is a critical step in the malignancy progression of solid tumors. Many investigations have demonstrated the usefulness of immunotoxins to halt angiogenesis in solid tumors. Pharmaceutically, Vascular Endothelial Growth Factor (VEGF) can deliver coupled toxins to the tumor vessels through VEGF Receptors. In the current study, we designed, expressed, and assessed the in vitro and in vivo toxicities of a novel immunotoxin consisting of mouse VEGF and heminecrolysin toxin (mVEGF-HNc). The fusion protein was expressed in E. coli and purified via Ni+2 affinity chromatography. The biological activity of immunotoxin was evaluated on NIH/3T3 cells and TC1-tumorized mouse model. The mVEGF-NHc showed significant cytotoxicity on the cells as VEGFR-expressing cells. Moreover, the size of the tumor in the mVEGF-HNc-treated group started to reduce after six injections, while it continued to grow in the PBS-received mice. Efficacious targeting of solid tumor cells via mVEGF-HNc suggests its prospective therapeutic potential for cancer therapy.


Assuntos
Imunotoxinas , Neoplasias , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular , Escherichia coli/metabolismo , Fatores de Crescimento do Endotélio Vascular , Neoplasias/tratamento farmacológico
19.
Iran J Basic Med Sci ; 25(12): 1477-1486, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36544521

RESUMO

Objectives: In this study, Boltorn® H40-PEG-MTX-anti-VEGFR2 nanobody was fabricated in which nanobody was selected for blocking the receptor, H40 as a nanocarrier for delivery of methotrexate (MTX) to the tumor cells, and polyethylene glycol (PEG) moieties for improving the blood circulation time and safety. Materials and Methods: The synthesis process of the nanosystem has been characterized by different analytical methods. Results: The prepared nanoplatform exhibited high drug loading capacity, excellent colloidal stability, and an average particle size of around 105 nm. MTX was successfully conjugated through ester bonds and its release profile clearly showed that the ester bond is in favor of releasing the drug in acidic pH (5.5). The cytotoxicity of the developed nanoplatform exhibited great anti-cancer activity against MCF7 and KDR293 (cells with overexpressed anti-VEGFR2 NB receptors) cell lines while no deleterious toxicity was observed for nanocarrier against HEK293 normal cells. Furthermore, both hemolysis and LD50 assay results confirmed the hemocompatibility and biocompatibility of the developed nanoplatform. Conclusion: The most striking result to derive from the data is that the designed nanoplatform could potentially inhibit cell migration and invasion and the anti-angiogenesis properties of the developed nanoplatform may serve as a promising nanosystem to suppress the formation of blood vessels around tumor cells and consequently inhibit tumor progression.

20.
Front Mol Biosci ; 9: 1039324, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36545512

RESUMO

For adenoviruses (Ads) to be optimally effective in cancer theranostics, they need to be retargeted toward target cells and lose their natural tropism. Typically, this is accomplished by either engineering fiber proteins and/or employing bispecific adapters, capable of bonding Ad fibers and tumor antigen receptors. This study aimed to present a simple and versatile method for generating Ad-based bionanoparticles specific to target cells, using the SpyTag-SpyCatcher system. The SpyTag peptide was inserted into the HI loop of fiber-knob protein, which could act as a covalent anchoring site for a targeting moiety fused to a truncated SpyCatcher (SpyCatcherΔ) pair. After confirming the presence and functionality of SpyTag on the Ad type-5 (Ad5) fiber knob, an adapter molecule, comprising of SpyCatcherΔ fused to an anti-vascular endothelial growth factor receptor 2 (VEGFR2) nanobody, was recombinantly expressed in Escherichia coli and purified before conjugation to fiber-modified Ad5 (fmAd5). After evaluating fmAd5 detargeting from its primary coxsackie and adenovirus receptor (CAR), the nanobody-decorated fmAd5 could be efficiently retargeted to VEGFR2-expressing 293/KDR and human umbilical vein endothelial (HUVEC) cell lines. In conclusion, a plug-and-play platform was described in this study for detargeting and retargeting Ad5 through the SpyTag-SpyCatcher system, which could be potentially applied to generate tailored bionanoparticles for a broad range of specific targets; therefore, it can be introduced as a promising approach in cancer nanotheranostics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...