Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
RSC Adv ; 14(11): 7779-7785, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38444972

RESUMO

The growing threat to human health posed by multidrug-resistant Klebsiella pneumoniae (MDR-KP) indicates an urgent need to develop alternative therapeutic options. The emergence of colistin resistance further adds to the complexity. The study aims to explore in silico-screened phytomolecule 6-gingerol, the most potent active constituent of ginger, as an adjuvant to restore sensitivity in MDR-KP isolates to colistin. The screening of phytocompounds of Zingiber officinale were obtained from the spiceRx database, and molecular docking with efflux pump protein AcrB was performed using Schrödinger's Glide program. The synergistic and bactericidal effects of 6-gingerol in combination with colistin against MDR-KP isolates were determined following broth micro-dilution (MIC), checkerboard assay, and time-kill study. 6-Gingerol showed a good binding affinity with AcrB protein (-9.32 kcal mol-1) and followed the Lipinski rule of (RO5), demonstrating favourable drug-like properties. Further, the synergistic interaction of 6-gingerol with colistin observed from checkerboard assays against efflux-mediated colistin resistance MDR-KP isolates reveals it to be a prospectus adjuvant. The time-killing assays showed the effect of 6-gingerol in combination with colistin to be bactericidal against MSK9 and bacteriostatic against MSK4 and MSK7. Overall, the study provides insights into the potential use of 6-gingerol as a safe and easily available natural product to treat multidrug-resistant K. pneumoniae infections combined with colistin but needs in vivo toxicity evaluation before further recommendations can be made.

2.
J Biomol Struct Dyn ; : 1-17, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165647

RESUMO

The emergence of Multidrug resistance (MDR) in human pathogens has defected the existing antibiotics and compelled us to understand more about the basic science behind alternate anti-infective drug discovery. Soon, proteome analysis identified AcrB efflux pump protein as a promising drug target using plant-driven phytocompounds used in traditional medicine systems with lesser side effects. Thus, the present study aims to explore the novel, less toxic, and natural inhibitors of Klebsiella pneumoniae AcrB pump protein from 69 Zingiber officinale phyto-molecules available in the SpiceRx database through computational-biology approaches. AcrB protein's homology-modelling was carried out to get a 3D structure. The multistep-docking (HTVS, SP, and XP) were employed to eliminate less-suitable compounds in each step based on the docking score. The chosen hit-compounds underwent induced-fit docking (IFD). Based on the XP GScore, the top three compounds, epicatechin (-10.78), 6-gingerol (-9.71), and quercetin (-9.09) kcal/mol, were selected for further calculation of binding free energy (MM/GBSA). Furthermore, the short-listed compounds were assessed for their drug-like properties based on in silico ADMET properties and Pa, Pi values. In addition, the molecular dynamics simulation (MDS) studies for 250 ns elucidated the binding mechanism of epicatechin, 6-gingerol, and quercetin to AcrB. From the dynamic binding free energy calculations using MM/PBSA, 6-gingerol exhibited a strong binding affinity towards AcrB. Further, the 6-gingerol complex's energy fluctuation was observed from the free energy landscape. In conclusion, 6-gingerol has a promising inhibiting potential against the AcrB efflux pump and thus necessitates further validation through in vitro and in vivo experiments.Communicated by Ramaswamy H. Sarma.

3.
RSC Med Chem ; 15(1): 127-138, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38283226

RESUMO

Growing multi-drug resistance (MDR) among ESKAPE pathogens is a huge challenge. Increased resistance to last-resort antibiotics, like colistin, has further aggravated this. Efflux is identified as a major route of colistin resistance. So, finding an FDA-approved efflux inhibitor for potential application as an adjuvant to colistin was the primary objective of this study. E. coli-AcrB pump inhibitors and substrates were used to develop and validate the pharmacophoric model. Drugs confirming this pharmacophore were subjected to molecular docking to identify hits for the AcrB binding pocket. The efflux inhibition potential of the top hit was validated through the in vitro evaluation of the minimum inhibitory concentration (MIC) in combination with colistin. The checkerboard assay was done to demonstrate synergism, which was further corroborated by the Time-kill assay. Ten common pharmacophore hypotheses were successfully generated using substrate/inhibitors. Following enrichment analysis, AHHNR.100 was identified as the top-ranked hypothesis, and 207 unique compounds were found to conform to this hypothesis. The multi-step docking of these compounds against the AcrB protein revealed argatroban as the top non-antibiotic hit. This significantly inhibited the efflux activity of colistin-resistant clinical isolates K. pneumoniae (n = 1) and M. morganii (n = 2). Further, their combination with colistin enhanced the susceptibility of these isolates, and the effect was found to be synergistic. Accordingly, the time-kill assay of this combination showed 8-log and 2-log reductions against K. pneumoniae and M. morganii, respectively. In conclusion, this study found argatroban as a bacterial efflux inhibitor that can be potentially used to overcome efflux-mediated resistance.

4.
Antibiotics (Basel) ; 12(12)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38136769

RESUMO

The global rise in antibiotic resistance, fueled by indiscriminate antibiotic usage in medicine, aquaculture, agriculture, and the food industry, presents a significant public health challenge. Urban wastewater and sewage treatment plants have become key sources of antibiotic resistance proliferation. The present study focuses on the river Ganges in India, which is heavily impacted by human activities and serves as a potential hotspot for the spread of antibiotic resistance. We conducted a metagenomic analysis of sediment samples from six distinct locations along the river to assess the prevalence and diversity of antibiotic resistance genes (ARGs) within the microbial ecosystem. The metagenomic analysis revealed the predominance of Proteobacteria across regions of the river Ganges. The antimicrobial resistance (AMR) genes and virulence factors were determined by various databases. In addition to this, KEGG and COG analysis revealed important pathways related to AMR. The outcomes highlight noticeable regional differences in the prevalence of AMR genes. The findings suggest that enhancing health and sanitation infrastructure could play a crucial role in mitigating the global impact of AMR. This research contributes vital insights into the environmental aspects of antibiotic resistance, highlighting the importance of targeted public health interventions in the fight against AMR.

5.
Genes (Basel) ; 14(6)2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37372459

RESUMO

Morganella morganii is a Gram-negative opportunistic Enterobacteriaceae pathogen inherently resistant to colistin. This species causes various clinical and community-acquired infections. This study investigated the virulence factors, resistance mechanisms, functional pathways, and comparative genomic analysis of M. morganii strain UM869 with 79 publicly available genomes. The multidrug resistance strain UM869 harbored 65 genes associated with 30 virulence factors, including efflux pump, hemolysin, urease, adherence, toxin, and endotoxin. Additionally, this strain contained 11 genes related to target alteration, antibiotic inactivation, and efflux resistance mechanisms. Further, the comparative genomic study revealed a high genetic relatedness (98.37%) among the genomes, possibly due to the dissemination of genes between adjoining countries. The core proteome of 79 genomes contains the 2692 core, including 2447 single-copy orthologues. Among them, six were associated with resistance to major antibiotic classes manifested through antibiotic target alteration (PBP3, gyrB) and antibiotic efflux (kpnH, rsmA, qacG; rsmA; CRP). Similarly, 47 core orthologues were annotated to 27 virulence factors. Moreover, mostly core orthologues were mapped to transporters (n = 576), two-component systems (n = 148), transcription factors (n = 117), ribosomes (n = 114), and quorum sensing (n = 77). The presence of diversity in serotypes (type 2, 3, 6, 8, and 11) and variation in gene content adds to the pathogenicity, making them more difficult to treat. This study highlights the genetic similarity among the genomes of M. morganii and their restricted emergence, mostly in Asian countries, in addition to their growing pathogenicity and resistance. However, steps must be taken to undertake large-scale molecular surveillance and to direct suitable therapeutic interventions.


Assuntos
Antibacterianos , Genoma Bacteriano , Virulência/genética , Antibacterianos/farmacologia , Fatores de Virulência/genética , Farmacorresistência Bacteriana Múltipla/genética , Genômica
6.
3 Biotech ; 13(5): 139, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37124981

RESUMO

In this study, we described the carbapenem bla NDM-5-carrying extensive drug-resistant (XDR) K. pneumoniae ST437 from an urban river water Kathajodi in Odisha, India. The presence of carbapenem and co-occurrence of other resistance determinants (bla NDM-5, bla CTX-M, bla SHV, and bla TEM), virulence factors (fimH, mrkD, entB, irp-1, and ybtS), and capsular serotype (K54) represent its pathogenic potential. The insertion sequence ISAba125 and the bleomycin resistance gene ble MBL at upstream and downstream, respectively, could play a significant role in the horizontal transmission of the bla NDM-5. Its biofilm formation ability contributes toward environmental protection and its survivability. MLST analysis assigned the isolate to ST437 and clonal lineage to ST11 (CC11) with a single locus variant. The ST437 K. pneumoniae, a global epidemic clone, has been reported in North America, Europe, and Asia. This work contributes in understanding of the mechanisms behind the spread of bla NDM-5 K. pneumoniae ST437 and demands extensive molecular surveillance of river and nearby hospitals for better community health. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03556-5.

7.
3 Biotech ; 13(5): 127, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37064006

RESUMO

Morganella morganii, a non-negligent opportunistic pathogen of the family Enterobacteriaceae, enlisted recently in the global priority pathogens by WHO for its swift propensity to acquire drug-resistant genes, engendering enhanced death rates. A combination of diverse antimicrobials could be recycled to overcome the ongoing acquisition of resistance mechanisms by M. morganii. Herein, we investigated the in vitro synergistic effect of colistin with meropenem, rifampicin, minocycline and linezolid against three intrinsic colistin-resistant M. morganii strains collected from critical departments of tertiary care hospitals. The strains were identified and tested for antimicrobial susceptibility by VITEK 2 automated system. The 16S rRNA sequencing was used to reconfirm the species identification. Minimum inhibitory concentrations (MICs) of colistin, meropenem, rifampicin, minocycline and linezolid were determined by the broth microdilution method. Synergistic interactions were studied by checkerboard and time-kill assay. The VITEK 2 identification and 16S rRNA sequencing confirmed that the strains were M. morganii. The automated antimicrobial susceptibility test revealed that all three isolates were multi-drug resistant. The checkerboard analysis demonstrated the synergy of all four combinations with FICI values ranging from 0.06 to 0.31 in all three isolates. These results suggest a potential role of meropenem as an adjuvant for treating M. morganii infections. The current work presented the first evidence of synergy between colistin and other antibiotics against M. morganii infection, which needs validation through in vitro and in vivo studies using a larger number of isolates. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03551-w.

8.
Life (Basel) ; 13(1)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36676144

RESUMO

Primary apical periodontitis occurs due to various insults to the dental pulp including microbial infections, physical and iatrogenic trauma, whereas inadequate elimination of intraradicular infection during root canal treatment may lead to secondary apical periodontitis. We explored the complex intra-radicular microbial communities and their functional potential through genome reconstruction. We applied shotgun metagenomic sequencing, binning and functional profiling to identify the significant contributors to infection at the acute and chronic apical periodontal lesions. Our analysis revealed the five classified clusters representing Enterobacter, Enterococcus, Lacticaseibacillus, Pseudomonas, Streptococcus and one unclassified cluster of contigs at the genus level. Of them, the major contributors were Pseudomonas, with 90.61% abundance in acute conditions, whereas Enterobacter followed by Enterococcus with 69.88% and 15.42% abundance, respectively, in chronic conditions. Enterobacter actively participated in antibiotic target alteration following multidrug efflux-mediated resistance mechanisms, predominant in the chronic stage. The prediction of pathways involved in the destruction of the supportive tissues of the tooth in Enterobacter and Pseudomonas support their crucial role in the manifestation of respective disease conditions. This study provides information about the differential composition of the microbiome in chronic and acute apical periodontitis. It takes a step to interpret the role of a single pathogen, solely or predominantly, in establishing endodontic infection types through genome reconstruction following high throughput metagenomic DNA analysis. The resistome prediction sheds a new light on the therapeutic treatment guidelines for endodontists. However, it needs further conclusive research to support this outcome using a larger number of samples with similar etiological conditions, but different demographic origin.

9.
Lett Appl Microbiol ; 76(1)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36688750

RESUMO

The present study revealed the emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) and the associated driving factors in an urban river system surrounding Cuttack city, Odisha. The high contamination factor and contamination degree indicate poor water quality. The CRKP isolates showed 100% resistance against piperacillin, amoxicillin-clavulanic acid, piperacillin-tazobactam, ceftriaxone, ceftazidime, meropenem, and imipenem but less resistance to colistin (12.85%). Among the CRKP isolates, carbapenemase genes blaNDM, blaOXA-48-like, and blaKPC were detected in 94.28%, 35%, and 10% of isolates, respectively. The resistance genes (blaNDM, blaTEM, and blaCTX-M) were found to be significantly correlated with toxic metals (As, Cd, Co, Cu, Fe, Mn, Pb) (P < 0.05). Detection of virulence factors (yersiniabactin and aerobactin) and capsular serotypes (K1, K2, and K54 types) explain the pathogenicity of CRKP isolates. Enterobacterial repetitive intergenic consensus-PCR based molecular typing separated the CRKP strains into 13 clusters, of which VI and XI clusters showed similar resistance and virulence determinants, indicating the dissemination of clones from wastewater to the river system. Our results provide first-hand information on assessing risks to public health posed by the CRKP isolates and toxic metals in the Kathajodi River. Molecular surveillance of nearby hospitals for the prevalence of CRKP will help trace their transmission route.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Klebsiella pneumoniae , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , beta-Lactamases/genética , Carbapenêmicos , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Piperacilina , Rios , Águas Residuárias , Índia
10.
Front Cell Infect Microbiol ; 12: 933006, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909954

RESUMO

For the first time, we describe the whole genome of a yellow-pigmented, capsule-producing, pathogenic, and colistin-resistant Chryseobacterium gallinarum strain MGC42 isolated from a patient with urinary tract infection in India. VITEK 2 automated system initially identified this isolate as C. indologenes. However, 16S rRNA gene sequencing revealed that MGC42 shared 99.67% sequence identity with C. gallinarum-type strain DSM 27622. The draft genome of the strain MGC42 was 4,455,926 bp long with 37.08% Guanine-Cytosine (GC) content and was devoid of any plasmid. Antibiotic resistance, virulence, and toxin genes were predicted by implementing a machine learning classifier. Potential homologs of 340 virulence genes including hemolysin secretion protein D, metalloprotease, catalase peroxidases and autotransporter adhesins, type VI secretion system (T6SS) spike proteins, and 27 toxin factors including a novel toxin domain Ntox23 were identified in the genome. Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologs of 110 transporter proteins were predicted that were in agreement with moderate efflux activity. Twelve antibiotic resistance genes including two potentially novel putative ß-lactamase genes sharing low similarity with known ß-lactamase genes were also identified in the genome of this strain. The strain MGC42 was also resistant to several classes of antibiotics along with carbapenems and polymyxin. We also identified mutations in the orthologs of pmrB (M384T) and lpxD (I66V) that might be responsible for colistin resistance. The MGC42 strain shared 683 core genes with other environmental and clinical strains of Chryseobacterium species. Our findings suggest that the strain MGC42 is a multidrug-resistant, virulent pathogen and recommend 16S rRNA gene sequencing to identify clinical specimens of Chryseobacterium species.


Assuntos
Antibacterianos , Chryseobacterium , Colistina , Farmacorresistência Bacteriana Múltipla , Infecções por Flavobacteriaceae , RNA Ribossômico 16S , Antibacterianos/farmacologia , Chryseobacterium/genética , Chryseobacterium/isolamento & purificação , Colistina/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Flavobacteriaceae/tratamento farmacológico , Infecções por Flavobacteriaceae/genética , Genoma Bacteriano/genética , Humanos , Testes de Sensibilidade Microbiana , RNA Ribossômico 16S/genética , beta-Lactamases/genética
11.
3 Biotech ; 12(1): 30, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35070620

RESUMO

The emergence of colistin-carbapenem-resistant Klebsiella pneumoniae (CCR-Kp) in bloodstream infection results in high mortality, and virulence factor contributes further to the difficulty of treatment. A total of 158 carbapenem-resistant K. pneumoniae (CRKP) isolates causing bloodstream infection were collected from three Indian tertiary care hospitals during the 9-month study period, of which 27 isolates exhibited resistance to both colistin and carbapenem antibiotics. In this study, all the strains were characterized for antimicrobial resistance, virulence factors and capsular serotypes that facilitate the development of colistin and carbapenem-resistant K.pneumoniae (CCR-Kp) in bloodstream infection. Fourteen isolates displayed extremely drug resistance (XDR), susceptible only to tigecycline, and the remaining 13 isolates displayed multidrug resistance (MDR). The gene prevalence analysis for CCR-Kp isolates showed the predominance of bla KPC (81.48%) followed by bla NDM (62.96%), bla VIM (37.03%) and bla IMP (18.51%) genes. The distribution of virulence genes was found to be fimH (81.48%), wabG (59.25%), mrkD (55.56%), entB (48.15%), irp1 (33.33%), and rmpA (18.52%). The capsular serotypes K1, K2, K5 and K54 have been identified in 16 isolates. The absence of plasmid-mediated colistin resistance (mcr) genes implies the involvement of other mechanisms. The ERIC and (GTG)5 molecular typing methods detected 18 and 22 distinct clustering patterns among the CCR-Kp isolates, respectively. A strong correlation between ERIC and (GTG)5 genotyping method was established with antimicrobial resistance patterns and virulence determinants at P < 0.05, while no correlation was found with capsular serotyping. Similar virulence and resistance typing among the isolates suggest hospital-acquired infection in a health care setup. These outcomes will advance our awareness of CCR-Kp outbreaks associated with tertiary care hospitals and help forecast their occurrence in the near future. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-03056-4.

12.
Genomics ; 112(5): 3256-3267, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32531445

RESUMO

The Queen loach (Botia dario), an ornamental fish species having export potential, belongs to family Cobitidae of order Cypriniformes. The dull colouration in captive condition as compared to nature is a drawback in ornamental fisheries. We report the first comparative transcriptomic analysis of Cultured (CBD) and Natural (NBD) B. dario using bioinformatics tools. Total 26 and 7 key genes for melanin and carotenoid colouration were found, respectively. KEGG pathway annotations of the genes were carried out, to annotate and describe their relevance for pigmentation. The qPCR validation of genes confirmed their expression pattern in the skin and muscle. Differential expression of, slc7a11, asip1, mc1r, dct, tyrp1a, tyr, bcdo2, csf1r, plin2, gsta2, star3 and stard5 in the skin and muscle tissues revealed the reasons for wild versus cultured colour variation. The molecular data was further supported by low yellowness and redness values of CBD skin and muscle in a colorimeter.


Assuntos
Cipriniformes/genética , Animais , Cor , Cipriniformes/metabolismo , Perfilação da Expressão Gênica , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Pigmentação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...