Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neural Transm (Vienna) ; 130(8): 989-1002, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37115329

RESUMO

Human cognitive abilities, and particularly hippocampus-dependent memory performance typically decline with increasing age. Immunosenescence, the age-related disintegration of the immune system, is increasingly coming into the focus of research as a considerable factor contributing to cognitive decline. In the present study, we investigated potential associations between plasma levels of pro- and anti-inflammatory cytokines and learning and memory performance as well as hippocampal anatomy in young and older adults. Plasma concentrations of the inflammation marker CRP as well as the pro-inflammatory cytokines IL-6 and TNF-α and the anti-inflammatory cytokine TGF-ß1 were measured in 142 healthy adults (57 young, 24.47 ± 4.48 years; 85 older, 63.66 ± 7.32 years) who performed tests of explicit memory (Verbal Learning and Memory Test, VLMT; Wechsler Memory Scale, Logical Memory, WMS) with an additional delayed recall test after 24 h. Hippocampal volumetry and hippocampal subfield segmentation were performed using FreeSurfer, based on T1-weighted and high-resolution T2-weighted MR images. When investigating the relationship between memory performance, hippocampal structure, and plasma cytokine levels, we found that TGF-ß1 concentrations were positively correlated with the volumes of the hippocampal CA4-dentate gyrus region in older adults. These volumes were in turn positively associated with better performance in the WMS, particularly in the delayed memory test. Our results support the notion that endogenous anti-inflammatory mechanisms may act as protective factors in neurocognitive aging.


Assuntos
Citocinas , Fator de Crescimento Transformador beta , Humanos , Idoso , Imageamento por Ressonância Magnética , Testes Neuropsicológicos , Hipocampo/diagnóstico por imagem , Cognição , Anti-Inflamatórios
2.
Hum Brain Mapp ; 44(8): 3283-3301, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36972323

RESUMO

Memory-related functional magnetic resonance imaging (fMRI) activations show age-related differences across multiple brain regions that can be captured in summary statistics like single-value scores. Recently, we described two single-value scores reflecting deviations from prototypical whole-brain fMRI activity of young adults during novelty processing and successful encoding. Here, we investigate the brain-behavior associations of these scores with age-related neurocognitive changes in 153 healthy middle-aged and older adults. All scores were associated with episodic recall performance. The memory network scores, but not the novelty network scores, additionally correlated with medial temporal gray matter and other neuropsychological measures including flexibility. Our results thus suggest that novelty-network-based fMRI scores show high brain-behavior associations with episodic memory and that encoding-network-based fMRI scores additionally capture individual differences in other aging-related functions. More generally, our results suggest that single-value scores of memory-related fMRI provide a comprehensive measure of individual differences in network dysfunction that may contribute to age-related cognitive decline.


Assuntos
Envelhecimento , Memória Episódica , Pessoa de Meia-Idade , Adulto Jovem , Humanos , Idoso , Envelhecimento/psicologia , Encéfalo/diagnóstico por imagem , Rememoração Mental , Mapeamento Encefálico , Imageamento por Ressonância Magnética/métodos , Testes Neuropsicológicos
4.
J Neural Transm (Vienna) ; 128(11): 1705-1720, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34302222

RESUMO

Dopaminergic neurotransmission plays a pivotal role in appetitively motivated behavior in mammals, including humans. Notably, action and valence are not independent in motivated tasks, and it is particularly difficult for humans to learn the inhibition of an action to obtain a reward. We have previously observed that the carriers of the DRD2/ANKK1 TaqIA A1 allele, that has been associated with reduced striatal dopamine D2 receptor expression, showed a diminished learning performance when required to learn response inhibition to obtain rewards, a finding that was replicated in two independent cohorts. With our present study, we followed two aims: first, we aimed to replicate our finding on the DRD2/ANKK1 TaqIA polymorphism in a third independent cohort (N = 99) and to investigate the nature of the genetic effects more closely using trial-by-trial behavioral analysis and computational modeling in the combined dataset (N = 281). Second, we aimed to assess a potentially modulatory role of prefrontal dopamine availability, using the widely studied COMT Val108/158Met polymorphism as a proxy. We first report a replication of the above mentioned finding. Interestingly, after combining all three cohorts, exploratory analyses regarding the COMT Val108/158Met polymorphism suggest that homozygotes for the Met allele, which has been linked to higher prefrontal dopaminergic tone, show a lower learning bias. Our results corroborate the importance of genetic variability of the dopaminergic system in individual learning differences of action-valence interaction and, furthermore, suggest that motivational learning biases are differentially modulated by genetic determinants of striatal and prefrontal dopamine function.


Assuntos
Catecol O-Metiltransferase , Dopamina , Animais , Viés , Catecol O-Metiltransferase/genética , Corpo Estriado , Genótipo , Humanos , Aprendizagem , Polimorfismo de Nucleotídeo Único/genética , Proteínas Serina-Treonina Quinases/genética
5.
Hum Brain Mapp ; 42(14): 4478-4496, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34132437

RESUMO

Older adults and particularly those at risk for developing dementia typically show a decline in episodic memory performance, which has been associated with altered memory network activity detectable via functional magnetic resonance imaging (fMRI). To quantify the degree of these alterations, a score has been developed as a putative imaging biomarker for successful aging in memory for older adults (Functional Activity Deviations during Encoding, FADE; Düzel et al., Hippocampus, 2011; 21: 803-814). Here, we introduce and validate a more comprehensive version of the FADE score, termed FADE-SAME (Similarity of Activations during Memory Encoding), which differs from the original FADE score by considering not only activations but also deactivations in fMRI contrasts of stimulus novelty and successful encoding, and by taking into account the variance of young adults' activations. We computed both scores for novelty and subsequent memory contrasts in a cohort of 217 healthy adults, including 106 young and 111 older participants, as well as a replication cohort of 117 young subjects. We further tested the stability and generalizability of both scores by controlling for different MR scanners and gender, as well as by using different data sets of young adults as reference samples. Both scores showed robust age-group-related differences for the subsequent memory contrast, and the FADE-SAME score additionally exhibited age-group-related differences for the novelty contrast. Furthermore, both scores correlate with behavioral measures of cognitive aging, namely memory performance. Taken together, our results suggest that single-value scores of memory-related fMRI responses may constitute promising biomarkers for quantifying neurocognitive aging.


Assuntos
Encéfalo/fisiologia , Envelhecimento Cognitivo/fisiologia , Neuroimagem Funcional/métodos , Hipocampo/fisiologia , Memória Episódica , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Feminino , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
Sci Rep ; 11(1): 6742, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33762638

RESUMO

The Met allele of the Val66Met SNP of the BDNF gene (rs6265) is associated with impaired activity-dependent release of brain-derived neurotrophic factor (BDNF), resulting in reduced synaptic plasticity, impaired glutamatergic neurotransmission, and morphological changes. While previous work has demonstrated Val66Met effects on magnetic resonance spectroscopy (MRS) markers of either glutamatergic metabolism (Glx) or neuronal integrity (NAA), no study has investigated Val66Met effects on these related processes simultaneously. As these metabolites share a metabolic pathway, the Glx/NAA ratio may be a more sensitive marker of changes associated with the Val66Met SNP. This ratio is increased in psychiatric disorders linked to decreased functioning in the anterior cingulate cortex (ACC). In this study, we investigated the correlation of the Val66Met polymorphism of the BDNF gene with Glx/NAA in the pregenual anterior cingulate cortex (pgACC) using MRS at 3 Tesla (T) (n = 30, all males) and 7 T (n = 98, 40 females). In both cohorts, Met carriers had lower Glx/NAA compared to Val homozygotes. Follow-up analyses using absolute quantification revealed that the Met carriers do not show decreased pgACC glutamate or glutamine levels, but instead show increased NAA compared to the Val homozygotes. This finding may in part explain conflicting evidence for Val66Met as a risk factor for developing psychiatric illnesses.


Assuntos
Alelos , Substituição de Aminoácidos , Fator Neurotrófico Derivado do Encéfalo/genética , Ácido Glutâmico/metabolismo , Metionina/metabolismo , Polimorfismo de Nucleotídeo Único , Ondas Encefálicas , Feminino , Estudos de Associação Genética , Genótipo , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/metabolismo , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino
7.
Eur J Neurosci ; 53(12): 3942-3959, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32583466

RESUMO

Alterations of the brain extracellular matrix (ECM) can perturb the structure and function of brain networks like the hippocampus, a key region in human memory that is commonly affected in psychiatric disorders. Here, we investigated the potential effects of a genome-wide psychiatric risk variant in the NCAN gene encoding the ECM proteoglycan neurocan (rs1064395) on memory performance, hippocampal function and cortical morphology in young, healthy volunteers. We assessed verbal memory performance in two cohorts (N = 572, 302) and found reduced recall performance in risk allele (A) carriers across both cohorts. In 117 participants, we performed functional magnetic resonance imaging using a novelty-encoding task with visual scenes. Risk allele carriers showed higher false alarm rates during recognition, accompanied by inefficiently increased left hippocampal activation. To assess effects of rs1064395 on brain morphology, we performed voxel-based morphometry in 420 participants from four independent cohorts and found lower grey matter density in the ventrolateral and rostral prefrontal cortex of risk allele carriers. In silico eQTL analysis revealed that rs1064395 SNP is linked not only to increased prefrontal expression of the NCAN gene itself, but also of the neighbouring HAPLN4 gene, suggesting a more complex effect of the SNP on ECM composition. Our results suggest that the NCAN rs1064395 A allele is associated with lower hippocampus-dependent memory function, variation of prefrontal cortex structure and ECM composition. Considering the well-documented hippocampal and prefrontal dysfunction in bipolar disorder and schizophrenia, our results may reflect an intermediate phenotype by which NCAN rs1064395 contributes to disease risk.


Assuntos
Transtorno Bipolar , Hipocampo , Neurocam/genética , Esquizofrenia , Mapeamento Encefálico , Proteoglicanas de Sulfatos de Condroitina/genética , Hipocampo/diagnóstico por imagem , Hipocampo/fisiologia , Humanos , Lectinas Tipo C/genética , Imageamento por Ressonância Magnética , Memória , Proteínas do Tecido Nervoso/genética
8.
Neuroimage Clin ; 20: 715-723, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30238915

RESUMO

BACKGROUND: Ketamine is receiving increasing attention as a rapid-onset antidepressant in patients suffering from major depressive disorder (MDD) with treatment resistance or severe suicidal ideation. Ketamine modulates several neurotransmitter systems, including norepinephrine via the norepinephrine transporter (NET), both peripherally and centrally. The locus coeruleus (LC), which has high NET concentration, has been attributed to brain networks involved in depression. Thus we investigated the effects of single-dose of racemic ketamine on the LC using resting state functional MRI. METHODS: Fifty-nine healthy participants (mean age 25.57 ±â€¯4.72) were examined in a double-blind, randomized, placebo-controlled study with 7 Tesla MRI. We investigated the resting state functional connectivity (rs-fc) of the LC before and one hour after subanesthetic ketamine injection (0.5 mg/kg), as well as associations between its rs-fc and a common polymorphism in the NET gene (rs28386840). RESULTS: A significant interaction of drug and time was revealed, and post hoc testing showed decreased rs-fc between LC and the thalamus after ketamine administration compared with baseline levels, including the mediodorsal, ventral anterior, ventral lateral, ventral posterolateral and centromedian nuclei. The rs-fc reduction was more pronounced in NET rs28386840 [AA] homozygous subjects than in [T] carriers. CONCLUSIONS: We demonstrated acute rs-fc changes after ketamine administration in the central node of the norepinephrine pathway. These findings may contribute to understanding the antidepressant effect of ketamine at the system level, supporting modes of action on networks subserving aberrant arousal regulation in depression.


Assuntos
Antidepressivos/administração & dosagem , Ketamina/administração & dosagem , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/fisiologia , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/genética , Norepinefrina/fisiologia , Adulto , Mapeamento Encefálico , Método Duplo-Cego , Feminino , Genótipo , Humanos , Imageamento por Ressonância Magnética , Masculino , Polimorfismo de Nucleotídeo Único , Adulto Jovem
9.
J Neurosci ; 38(22): 5067-5077, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29724796

RESUMO

Anxiety disorders are common and debilitating conditions with higher prevalence in women. However, factors that predispose women to anxiety phenotypes are not clarified. Here we investigated potential contribution of the single nucleotide polymorphism rs2236418 in GAD2 gene to changes in regional inhibition/excitation balance, anxiety-like traits, and related neural activity in both sexes. One hundred and five healthy individuals were examined with high-field (7T) multimodal magnetic resonance imaging (MRI); including resting-state functional MRI in combination with assessment of GABA and glutamate (Glu) levels via MR spectroscopy. Regional GABA/Glu levels in anterior cingulate cortex (ACC) subregions were assessed as mediators of gene-personality interaction for the trait harm avoidance and moderation by sex was tested. In AA homozygotes, with putatively lower GAD2 promoter activity, we observed increased intrinsic neuronal activity and higher inhibition/excitation balance in pregenual ACC (pgACC) compared with G carriers. The pgACC drove a significant interaction of genotype, region, and sex, where inhibition/excitation balance was significantly reduced only in female AA carriers. This finding was specific for rs2236418 as other investigated single nucleotide polymorphisms of the GABA synthesis related enzymes (GAD1, GAD2, and GLS) were not significant. Furthermore, only in women there was a negative association of pgACC GABA/Glu ratios with harm avoidance. A moderated-mediation model revealed that pgACC GABA/Glu also mediated the association between the genotype variant and level of harm avoidance, dependent on sex. Our data thus provide new insights into the neurochemical mechanisms that control emotional endophenotypes in humans and constitute predisposing factors for the development of anxiety disorders in women.SIGNIFICANCE STATEMENT Anxiety disorders are among the most common and burdensome psychiatric disorders, with higher prevalence rates in women. The causal mechanisms are, however, poorly understood. In this study we propose a neurobiological basis that could help to explain female bias of anxiety endophenotypes. Using magnetic resonance brain imaging and personality questionnaires we show an interaction of the genetic variation rs2236418 in the GAD2 gene and sex on GABA/glutamate (Glu) balance in the pregenual anterior cingulate cortex (pgACC), a region previously connected to affect regulation and anxiety disorders. The GAD2 gene polymorphism further influenced baseline neuronal activity in the pgACC. Importantly, GABA/Glu was shown to mediate the relationship between the genetic variant and harm avoidance, however, only in women.


Assuntos
Aprendizagem da Esquiva/fisiologia , Glutamato Descarboxilase/genética , Giro do Cíngulo/fisiologia , Polimorfismo Genético/genética , Adulto , Mapeamento Encefálico , Feminino , Genótipo , Humanos , Imageamento por Ressonância Magnética , Masculino , Personalidade , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Adulto Jovem
10.
Int J Neuropsychopharmacol ; 20(11): 909-918, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29099972

RESUMO

Background: The increasing use of ketamine as a potential rapid-onset antidepressant necessitates a better understanding of its effects on blood pressure and heart rate, well-known side effects at higher doses. For the subanesthetic dose used for depression, potential predictors of these cardiovascular effects are important factors influencing clinical decisions. Since ketamine influences the sympathetic nervous system, we investigated the impact of autonomic nervous system-related factors on the cardiovascular response: a genetic polymorphism in the norepinephrine transporter and gender effects. Methods: Blood pressure and heart rate were monitored during and following administration of a subanesthetic dose of ketamine or placebo in 68 healthy participants (mean age 26.04 ±5.562 years) in a double-blind, randomized, controlled, parallel-design trial. The influences of baseline blood pressure/heart rate, gender, and of a polymorphism in the norepinephrine transporter gene (NET SLC6A2, rs28386840 [A-3081T]) on blood pressure and heart rate changes were investigated. To quantify changes in blood pressure and heart rate, we calculated the maximum change from baseline (ΔMAX) and the time until maximum change (TΔMAX). Results: Systolic and diastolic blood pressure as well as heart rate increased significantly upon ketamine administration, but without reaching hypertensive levels. During administration, the systolic blood pressure at baseline (TP0Sys) correlated negatively with the time to achieve maximal systolic blood pressure (TΔMAXSys, P<.001). Furthermore, women showed higher maximal diastolic blood pressure change (ΔMAXDia, P<.001) and reached this peak earlier than men (TΔMAXDia, P=.017) at administration. NET rs28386840 [T] carriers reached their maximal systolic blood pressure during ketamine administration significantly earlier than [A] homozygous (TΔMAXSys, P=.030). In a combined regression model, both genetic polymorphism and TP0Sys were significant predictors of TΔMAXSys (P<.0005). Conclusions: Subanesthetic ketamine increased both blood pressure and heart rate without causing hypertensive events. Furthermore, we identified gender and NET rs28386840 genotype as factors that predict increased cardiovascular sequelae of ketamine administration in our young, healthy study population providing a potential basis for establishing monitoring guidelines.


Assuntos
Analgésicos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Ketamina/farmacologia , Adulto , Análise de Variância , Método Duplo-Cego , Feminino , Seguimentos , Genótipo , Humanos , Modelos Lineares , Imageamento por Ressonância Magnética , Masculino , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/genética , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Polimorfismo Genético/genética , Fatores Sexuais , Adulto Jovem
11.
Front Psychol ; 8: 654, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28507526

RESUMO

Dopamine is critically important in the neural manifestation of motivated behavior, and alterations in the human dopaminergic system have been implicated in the etiology of motivation-related psychiatric disorders, most prominently addiction. Patients with chronic addiction exhibit reduced dopamine D2 receptor (DRD2) availability in the striatum, and the DRD2 TaqIA (rs1800497) and C957T (rs6277) genetic polymorphisms have previously been linked to individual differences in striatal dopamine metabolism and clinical risk for alcohol and nicotine dependence. Here, we investigated the hypothesis that the variants of these polymorphisms would show increased reward-related memory formation, which has previously been shown to jointly engage the mesolimbic dopaminergic system and the hippocampus, as a potential intermediate phenotype for addiction memory. To this end, we performed functional magnetic resonance imaging (fMRI) in 62 young, healthy individuals genotyped for DRD2 TaqIA and C957T variants. Participants performed an incentive delay task, followed by a recognition memory task 24 h later. We observed effects of both genotypes on the overall recognition performance with carriers of low-expressing variants, namely TaqIA A1 carriers and C957T C homozygotes, showing better performance than the other genotype groups. In addition to the better memory performance, C957T C homozygotes also exhibited a response bias for cues predicting monetary reward. At the neural level, the C957T polymorphism was associated with a genotype-related modulation of right hippocampal and striatal fMRI responses predictive of subsequent recognition confidence for reward-predicting items. Our results indicate that genetic variations associated with DRD2 expression affect explicit memory, specifically for rewarded stimuli. We suggest that the relatively better memory for rewarded stimuli in carriers of low-expressing DRD2 variants may reflect an intermediate phenotype of addiction memory.

13.
Front Syst Neurosci ; 8: 140, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25147510

RESUMO

Motivational salience plays an important role in shaping human behavior, but recent studies demonstrate that human performance is not uniformly improved by motivation. Instead, action has been shown to dominate valence in motivated tasks, and it is particularly difficult for humans to learn the inhibition of an action to obtain a reward, but the neural mechanism behind this behavioral specificity is yet unclear. In all mammals, including humans, the monoamine neurotransmitter dopamine is particularly important in the neural manifestation of appetitively motivated behavior, and the human dopamine system is subject to considerable genetic variability. The well-studied TaqIA restriction fragment length polymorphism (rs1800497) has previously been shown to affect striatal dopamine metabolism. In this study we investigated a potential effect of this genetic variation on motivated action/inhibition learning. Two independent cohorts consisting of 87 and 95 healthy participants, respectively, were tested using the previously described valenced go/no-go learning paradigm in which participants learned the reward-associated no-go condition significantly worse than all other conditions. This effect was modulated by the TaqIA polymorphism, with carriers of the A1 allele showing a diminished learning-related performance enhancement in the rewarded no-go condition compared to the A2 homozygotes. This result highlights a modulatory role for genetic variability of the dopaminergic system in individual learning differences of action-valence interaction.

14.
Front Hum Neurosci ; 8: 260, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24808846

RESUMO

The guanine nucleotide exchange factor RASGRF1 is an important regulator of intracellular signaling and neural plasticity in the brain. RASGRF1-deficient mice exhibit a complex phenotype with learning deficits and ocular abnormalities. Also in humans, a genome-wide association study has identified the single nucleotide polymorphism (SNP) rs8027411 in the putative transcription regulatory region of RASGRF1 as a risk variant of myopia. Here we aimed to assess whether, in line with the RASGRF1 knockout mouse phenotype, rs8027411 might also be associated with human memory function. We performed computer-based neuropsychological learning experiments in two independent cohorts of young, healthy participants. Tests included the Verbal Learning and Memory Test (VLMT) and the logical memory section of the Wechsler Memory Scale (WMS). Two sub-cohorts additionally participated in functional magnetic resonance imaging (fMRI) studies of hippocampus function. 119 participants performed a novelty encoding task that had previously been shown to engage the hippocampus, and 63 subjects participated in a reward-related memory encoding study. RASGRF1 rs8027411 genotype was indeed associated with memory performance in an allele dosage-dependent manner, with carriers of the T allele (i.e., the myopia risk allele) showing better memory performance in the early encoding phase of the VLMT and in the recall phase of the WMS logical memory section. In fMRI, T allele carriers exhibited increased hippocampal activation during presentation of novel images and during encoding of pictures associated with monetary reward. Taken together, our results provide evidence for a role of the RASGRF1 gene locus in hippocampus-dependent memory and, along with the previous association with myopia, point toward pleitropic effects of RASGRF1 genetic variations on complex neural function in humans.

15.
Front Hum Neurosci ; 7: 250, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23760450

RESUMO

Dopamine has been implicated in the fine-tuning of complex cognitive and motor function and also in the anticipation of future rewards. This dual function of dopamine suggests that dopamine might be involved in the generation of active motivated behavior. The DRD2 TaqIA polymorphism of the dopamine D2 receptor gene (rs1800497) has previously been suggested to affect striatal function with carriers of the less common A1 allele exhibiting reduced striatal D2 receptor density and increased risk for addiction. Here we aimed to investigate the influences of DRD2 TaqIA genotype on the modulation of interference processing by reward and punishment. Forty-six young, healthy volunteers participated in a behavioral experiment, and 32 underwent functional magnetic resonance imaging (fMRI). Participants performed a flanker task with a motivation manipulation (monetary reward, monetary loss, neither, or both). Reaction times (RTs) were shorter in motivated flanker trials, irrespective of congruency. In the fMRI experiment motivation was associated with reduced prefrontal activation during incongruent vs. congruent flanker trials, possibly reflecting increased processing efficiency. DRD2 TaqIA genotype did not affect overall RTs, but interacted with motivation on the congruency-related RT differences, with A1 carriers showing smaller interference effects to reward alone and A2 homozygotes exhibiting a specific interference reduction during combined reward (REW) and punishment trials (PUN). In fMRI, anterior cingulate activity showed a similar pattern of genotype-related modulation. Additionally, A1 carriers showed increased anterior insula activation relative to A2 homozygotes. Our results point to a role for genetic variations of the dopaminergic system in individual differences of cognition-motivation interaction.

16.
Neurorehabil Neural Repair ; 27(6): 491-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23549522

RESUMO

BACKGROUND: To explore whether a polymorphism in dopamine metabolism influences the effectiveness of neurological rehabilitation and the outcome after ischemic stroke. METHODS: The Barthel Index (BI) and the Rivermead Motor Assessment (RMA) were assessed in 78 moderately affected stroke patients (1) after they had entered a neurological inpatient rehabilitation, (2) after 4 weeks of rehabilitation therapy, and (3) 6 months later. Polymorphisms of the gene encoding catechol-O-methyltransferase (COMT) were determined. BI and RMA results were analyzed with respect to the genetic profiles of COMT. RESULTS: Carriers of COMT Val/Val alleles showed better results in BI and RMA than COMT Met/Met carriers at all 3 time points. Val/Met carriers exhibited results in between the homozygotes, suggesting a gene-dose relationship. Altogether, BI and RMA results were highly correlated. CONCLUSION: Stroke patients with COMT Val/Val alleles had higher motor functions and abilities of activities of daily living even at the beginning of the rehabilitation period. All patient groups improved during the rehabilitation period to a similar degree, suggesting that physical therapy is comparably effective in all polymorphism subtypes.


Assuntos
Catecol O-Metiltransferase/genética , Modalidades de Fisioterapia , Polimorfismo Genético/genética , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral/genética , Resultado do Tratamento , Atividades Cotidianas , Idoso , Análise de Variância , Isquemia Encefálica/complicações , Método Duplo-Cego , Extremidades/fisiopatologia , Feminino , Humanos , Masculino , Atividade Motora , Terapia Ocupacional , Resistência Física , Estudos Prospectivos , Treinamento Resistido , Índice de Gravidade de Doença , Acidente Vascular Cerebral/etiologia , Tronco/fisiopatologia
17.
PLoS One ; 8(1): e55613, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23383244

RESUMO

Recent investigations addressing the role of the synaptic multiadaptor molecule AKAP5 in human emotion and behavior suggest that the AKAP5 Pro100Leu polymorphism (rs2230491) contributes to individual differences in affective control. Carriers of the less common Leu allele show a higher control of anger as indicated by behavioral measures and dACC brain response on emotional distracters when compared to Pro homozygotes. In the current fMRI study we used an emotional working memory task according to the n-back scheme with neutral and negative emotional faces as target stimuli. Pro homozygotes showed a performance advantage at the behavioral level and exhibited enhanced activation of the amygdala and fusiform face area during working memory for emotional faces. On the other hand, Leu carriers exhibited increased activation of the dACC during performance of the 2-back condition. Our results suggest that AKAP5 Pro100Leu effects on emotion processing might be task-dependent with Pro homozygotes showing lower control of emotional interference, but more efficient processing of task-relevant emotional stimuli.


Assuntos
Proteínas de Ancoragem à Quinase A/genética , Emoções/fisiologia , Genótipo , Memória de Curto Prazo/fisiologia , Adulto , Encéfalo/fisiologia , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa , Adulto Jovem
18.
Front Psychiatry ; 1: 142, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21423451

RESUMO

Catechol-O-methyl transferase (COMT) is involved in the inactivation of dopamine in brain regions in which the dopamine transporter (DAT1) is sparsely expressed. The membrane-bound isoform of COMT (MB-COMT) is the predominantly expressed form in the mammalian central nervous system (CNS). It has been a matter of debate whether in neural cells of the CNS the enzymatic domain of MB-COMT is oriented toward the cytoplasmic or the extracellular compartment. Here we used live immunocytochemistry on cultured neocortical neurons and glial cells to investigate the expression and membrane orientation of native COMT and of transfected MB-COMT fused to green fluorescent protein (GFP). After live staining, COMT immunoreactivity was reliably detected in both neurons and glial cells after permeabilization, but not on unpermeabilized cells. Similarly, autofluorescence of COMT-GFP fusion protein and antibody fluorescence showed overlap only in permeabilized neurons. Our data provide converging evidence for an intracellular membrane orientation of MB-COMT in neurons and glial cells, suggesting the presence of a DAT1-independent postsynaptic uptake mechanism for dopamine, prior to its degradation via COMT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...