Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Image Comput Comput Assist Interv ; 11(Pt 2): 306-12, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18982619

RESUMO

We present a complete system for image-based 3D vocal tract analysis ranging from MR image acquisition during phonation, semi-automatic image processing, quantitative modeling including model-based speech synthesis, to quantitative model evaluation by comparison between recorded and synthesized phoneme sounds. For this purpose, six professionally trained speakers, age 22-34y, were examined using a standardized MRI protocol (1.5 T, T1w FLASH, ST 4mm, 23 slices, acq. time 21s). The volunteers performed a prolonged (> or = 21s) emission of sounds of the German phonemic inventory. Simultaneous audio tape recording was obtained to control correct utterance. Scans were made in axial, coronal, and sagittal planes each. Computer-aided quantitative 3D evaluation included (i) automated registration of the phoneme-specific data acquired in different slice orientations, (ii) semi-automated segmentation of oropharyngeal structures, (iii) computation of a curvilinear vocal tract midline in 3D by nonlinear PCA, (iv) computation of cross-sectional areas of the vocal tract perpendicular to this midline. For the vowels /a/,/e/,/i/,/o/,/ø/,/u/,/y/, the extracted area functions were used to synthesize phoneme sounds based on an articulatory-acoustic model. For quantitative analysis, recorded and synthesized phonemes were compared, where area functions extracted from 2D midsagittal slices were used as a reference. All vowels could be identified correctly based on the synthesized phoneme sounds. The comparison between synthesized and recorded vowel phonemes revealed that the quality of phoneme sound synthesis was improved for phonemes /a/, /o/, and /y/, if 3D instead of 2D data were used, as measured by the average relative frequency shift between recorded and synthesized vowel formants (p < 0.05, one-sided Wilcoxon rank sum test). In summary, the combination of fast MRI followed by subsequent 3D segmentation and analysis is a novel approach to examine human phonation in vivo. It unveils functional anatomical findings that may be essential for realistic modelling of the human vocal tract during speech production.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Modelos Biológicos , Medida da Produção da Fala/métodos , Prega Vocal/anatomia & histologia , Prega Vocal/fisiologia , Adulto , Simulação por Computador , Feminino , Humanos , Masculino , Modelos Anatômicos , Adulto Jovem
2.
Neural Netw ; 17(8-9): 1327-44, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15555869

RESUMO

In this paper, we present a fully automated image segmentation method based on an algorithm that provides adaptive plasticity in function approximation problems: the deformable (feature) map (DM) algorithm. The DM approach reduces a class of similar function approximation problems to the explicit supervised one-shot training of a single data set. This is followed by a subsequent, appropriate similarity transformation, which is based on a self-organized deformation of the underlying multidimensional probability distributions. We apply this algorithm to the real-world problem of fully automated voxel-based multispectral image segmentation, employing magnetic resonance data sets of the human brain. In contrast to previous segmentation approaches, the knowledge obtained within the segmentation procedure of a single prototypical reference data set can be re-utilized for the segmentation of new, 'similar' data employing a strategy of incremental adaptive learning based on the DM algorithm. Thus, we obtain a fully automatic segmentation method that does neither require manual contour tracing of training regions, visual classification of voxel clusters, nor any other kind of human intervention. Our application demonstrates that flexible learning by a strategy of self-organized incremental model adaptation can contribute to increase the efficiency and practicability of biomedical image processing systems.


Assuntos
Inteligência Artificial , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Algoritmos , Encéfalo/patologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...