Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 189: 108728, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38850672

RESUMO

Bisphenol A alternatives are manufactured as potentially less harmful substitutes of bisphenol A (BPA) that offer similar functionality. These alternatives are already in the market, entering the environment and thus raising ecological concerns. However, it can be expected that levels of BPA alternatives will dominate in the future, they are limited information on their environmental safety. The EU PARC project highlights BPA alternatives as priority chemicals and consolidates information on BPA alternatives, with a focus on environmental relevance and on the identification of the research gaps. The review highlighted aspects and future perspectives. In brief, an extension of environmental monitoring is crucial, extending it to cover BPA alternatives to track their levels and facilitate the timely implementation of mitigation measures. The biological activity has been studied for BPA alternatives, but in a non-systematic way and prioritized a limited number of chemicals. For several BPA alternatives, the data has already provided substantial evidence regarding their potential harm to the environment. We stress the importance of conducting more comprehensive assessments that go beyond the traditional reproductive studies and focus on overlooked relevant endpoints. Future research should also consider mixture effects, realistic environmental concentrations, and the long-term consequences on biota and ecosystems.

2.
Cytometry A ; 105(3): 203-213, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37864330

RESUMO

Microalgae, small photosynthetic unicells, are of great interest to ecology, ecotoxicology and biotechnology and there is a growing need to investigate the ability of cells to photosynthesize under variable conditions. Current strategies involve hand-operated pulse-amplitude-modulated (PAM) chlorophyll fluorimeters, which can provide detailed insights into the photophysiology of entire populations- or individual cells of microalgae but are typically limited in their throughput. To increase the throughput of a commercially available MICROSCOPY-PAM system, we present the PAM Automation Control Manager ('PACMan'), an open-source Python software package that automates image acquisition, microscopy stage control and the triggering of external hardware components. PACMan comes with a user-friendly graphical user interface and is released together with a stand-alone tool (PAMalysis) for the automated calculation of per-cell maximum quantum efficiencies (= Fv /Fm ). Using these two software packages, we successfully tracked the photophysiology of >1000 individual cells of green algae (Chlamydomonas reinhardtii) and dinoflagellates (genus Symbiodiniaceae) within custom-made microfluidic devices. Compared to the manual operation of MICROSCOPY-PAM systems, this represents a 10-fold increase in throughput. During experiments, PACMan coordinated the movement of the microscope stage and triggered the MICROSCOPY-PAM system to repeatedly capture high-quality image data across multiple positions. Finally, we analyzed single-cell Fv /Fm with the manufacturer-supplied software and PAMalysis, demonstrating a median difference <0.5% between both methods. We foresee that PACMan, and its auxiliary software package will help increase the experimental throughput in a range of microalgae studies currently relying on hand-operated MICROSCOPY-PAM technologies.


Assuntos
Dinoflagellida , Microalgas , Clorofila , Fotossíntese/fisiologia , Fluorometria , Software
3.
Environ Sci Technol ; 56(16): 11100-11102, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35895873
4.
Cell Rep Methods ; 2(5): 100216, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35637907

RESUMO

From individual cells to whole organisms, O2 transport unfolds across micrometer- to millimeter-length scales and can change within milliseconds in response to fluid flows and organismal behavior. The spatiotemporal complexity of these processes makes the accurate assessment of O2 dynamics via currently available methods difficult or unreliable. Here, we present "sensPIV," a method to simultaneously measure O2 concentrations and flow fields. By tracking O2-sensitive microparticles in flow using imaging technologies that allow for instantaneous referencing, we measured O2 transport within (1) microfluidic devices, (2) sinking model aggregates, and (3) complex colony-forming corals. Through the use of sensPIV, we find that corals use ciliary movement to link zones of photosynthetic O2 production to zones of O2 consumption. SensPIV can potentially be extendable to study flow-organism interactions across many life-science and engineering applications.


Assuntos
Antozoários , Oxigênio , Animais , Oxigênio/metabolismo , Fotossíntese , Antozoários/metabolismo
5.
ISME J ; 16(8): 2060-2064, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35474114

RESUMO

Photosynthetic dinoflagellates in the family Symbiodiniaceae engage in symbiosis with scleractinian corals. As coral 'bleaching' is partly governed by the thermal sensitivity of different Symbiodiniaceae lineages, numerous studies have investigated their temperature sensitivity. However, the systematic identification of single-cells with increased temperature resistance among these dinoflagellates has remained inaccessible, mostly due to a lack of technologies operating at the microscale. Here, we employed a unique combination of microfluidics, miniaturized temperature control, and chlorophyll fluorometry to characterize the single-cell heterogeneity among five representative species within the Symbiodiniaceae family under temperature stress. We monitored single-cell maximum quantum yields (Fv/Fm) of photosystem (PS) II under increasing temperature stress (22‒39 °C, + 1 °C every 15 min), and detected a significant Fv/Fm reduction at lineage-specific temperatures ranging from 28 °C to 34 °C alongside a 40- to 180- fold increase in intraspecific heterogeneity under elevated temperatures (>31 °C). We discovered that the initial Fv/Fm of a cell could predict the same cell's ability to perform PSII photochemistry under moderate temperature stress (<32 °C), suggesting its use as a proxy for measuring the thermal sensitivity among Symbiodiniaceae. In combination, our study highlights the heterogeneous thermal sensitivity among photosynthetic Symbiodiniaceae and adds critical resolution to our understanding of temperature-induced coral bleaching.


Assuntos
Antozoários , Dinoflagellida , Animais , Antozoários/fisiologia , Recifes de Corais , Dinoflagellida/fisiologia , Temperatura Alta , Complexo de Proteína do Fotossistema II , Simbiose , Temperatura
6.
Mar Drugs ; 20(2)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35200648

RESUMO

Patellamides are highly bioactive compounds found along with other cyanobactins in the symbiosis between didemnid ascidians and the enigmatic cyanobacterium Prochloron. The biosynthetic pathway of patellamide synthesis is well understood, the relevant operons have been identified in the Prochloron genome and genes involved in patellamide synthesis are among the most highly transcribed cyanobacterial genes in hospite. However, a more detailed study of the in vivo dynamics of patellamides and their function in the ascidian-Prochloron symbiosis is complicated by the fact that Prochloron remains uncultivated despite numerous attempts since its discovery in 1975. A major challenge is to account for the highly dynamic microenvironmental conditions experienced by Prochloron in hospite, where light-dark cycles drive rapid shifts between hyperoxia and anoxia as well as pH variations from pH ~6 to ~10. Recently, work on patellamide analogues has pointed out a range of different catalytic functions of patellamide that could prove essential for the ascidian-Prochloron symbiosis and could be modulated by the strong microenvironmental dynamics. Here, we review fundamental properties of patellamides and their occurrence and dynamics in vitro and in vivo. We discuss possible functions of patellamides in the ascidian-Prochloron symbiosis and identify important knowledge gaps and needs for further experimental studies.


Assuntos
Peptídeos Cíclicos/metabolismo , Prochloron/metabolismo , Urocordados/metabolismo , Animais , Humanos , Concentração de Íons de Hidrogênio , Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/farmacologia , Prochloron/genética , Simbiose , Urocordados/genética
7.
Environ Sci Technol ; 55(22): 15456-15465, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34724376

RESUMO

Sinking particulate organic matter (POM) is a primary component of the ocean's biological carbon pump that is responsible for carbon export from the surface to the deep sea. Lipids derived from plankton comprise a significant fraction of sinking POM. Our understanding of planktonic lipid biosynthesis and the subsequent degradation of lipids in sinking POM is based on the analysis of bulk samples that combine many millions of plankton cells or dozens of sinking particles, which averages out natural heterogeneity. We developed and applied a nanoflow high-performance liquid-chromatography electrospray-ionization high-resolution accurate-mass mass spectrometry lipidomic method to show that two types of sinking particles─marine snow and fecal pellets─collected in the western North Atlantic Ocean have distinct lipidomes, providing new insights into their sources and degradation that would not be apparent from bulk samples. We pressed the limit of this approach by examining individual diatom cells from a single culture, finding marked lipid heterogeneity, possibly indicative of fundamental mechanisms underlying cell division. These single-cell data confirm that even cultures of phytoplankton cells should be viewed as mixtures of physiologically distinct populations. Overall, this work reveals previously hidden lipidomic heterogeneity in natural POM and phytoplankton cells, which may provide critical new insights into microscale chemical and microbial processes that control the export of sinking POM.


Assuntos
Lipidômica , Fitoplâncton , Oceanos e Mares , Plâncton , Água do Mar
8.
Lab Chip ; 21(9): 1694-1705, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33949404

RESUMO

This work describes a programmable heat-stage compatible with in situ microscopy for the accurate provision of spatiotemporally defined temperatures to different microfluidic devices. The heat-stage comprises an array of integrated thin-film Joule heaters and resistance temperature detectors (RTDs). External programming of the heat-stage is provided by a custom software program connected to temperature controllers and heater-sensor pairs. Biologically relevant (20-40 °C) temperature profiles can be supplied to cells within microfluidic devices as spatial gradients (0.5-1.5 °C mm-1) or in a time-varying approach via e.g. step-wise or sinusoidally varying profiles with negligible temperature over-shoot. Demonstration of the device is achieved by exposing two strains of the coral symbiont Symbiodinium to different temperature profiles while monitoring their single-cell photophysiology via chlorophyll fluorometry. This revealed that photophysiological responses to temperature depended on the exposure duration, exposure magnitude and strain background. Moreover, thermal dose analysis suggested that cell acclimatisation occurs under longer temperature (6 h) exposures but not under shorter temperature exposures (15 min). As the thermal sensitivity of Symbiodinium mediates the thermal tolerance in corals, our versatile technology now provides unique possibilities to research this interdependency at single cell resolution. Our results also show the potential of this heat-stage for further applications in fields such as biotechnology and ecotoxicology.


Assuntos
Microalgas , Temperatura Alta , Microscopia , Fenótipo , Simbiose , Temperatura
9.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33495340

RESUMO

Turbulence is an important determinant of phytoplankton physiology, often leading to cell stress and damage. Turbulence affects phytoplankton migration both by transporting cells and by triggering switches in migratory behavior, whereby vertically migrating cells can actively invert their direction of migration upon exposure to turbulent cues. However, a mechanistic link between single-cell physiology and vertical migration of phytoplankton in turbulence is currently missing. Here, by combining physiological and behavioral experiments with a mathematical model of stress accumulation and dissipation, we show that the mechanism responsible for the switch in the direction of migration in the marine raphidophyte Heterosigma akashiwo is the integration of reactive oxygen species (ROS) signaling generated by turbulent cues. Within timescales as short as tens of seconds, the emergent downward-migrating subpopulation exhibited a twofold increase in ROS, an indicator of stress, 15% lower photosynthetic efficiency, and 35% lower growth rate over multiple generations compared to the upward-migrating subpopulation. The origin of the behavioral split as a result of a bistable oxidative stress response is corroborated by the observation that exposure of cells to exogenous stressors (H2O2, UV-A radiation, or high irradiance), in lieu of turbulence, caused comparable ROS accumulation and an equivalent split into the two subpopulations. By providing a mechanistic link between the single-cell mechanics of swimming and physiology on the one side and the emergent population-scale migratory response and impact on fitness on the other, the ROS-mediated early warning response we discovered contributes to our understanding of phytoplankton community composition in future ocean conditions.


Assuntos
Movimento , Estresse Oxidativo , Fitoplâncton/fisiologia , Gravitação , Fotossíntese , Fitoplâncton/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Rotação , Fatores de Tempo
10.
Nat Protoc ; 16(2): 634-676, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33311714

RESUMO

Stable isotope labeling of microbial taxa of interest and their sorting provide an efficient and direct way to answer the question "who does what?" in complex microbial communities when coupled with fluorescence in situ hybridization or downstream 'omics' analyses. We have developed a platform for automated Raman-based sorting in which optical tweezers and microfluidics are used to sort individual cells of interest from microbial communities on the basis of their Raman spectra. This sorting of cells and their downstream DNA analysis, such as by mini-metagenomics or single-cell genomics, or cultivation permits a direct link to be made between the metabolic roles and the genomes of microbial cells within complex microbial communities, as well as targeted isolation of novel microbes with a specific physiology of interest. We describe a protocol from sample preparation through Raman-activated live cell sorting. Subsequent cultivation of sorted cells is described, whereas downstream DNA analysis involves well-established approaches with abundant methods available in the literature. Compared with manual sorting, this technique provides a substantially higher throughput (up to 500 cells per h). Furthermore, the platform has very high sorting accuracy (98.3 ± 1.7%) and is fully automated, thus avoiding user biases that might accompany manual sorting. We anticipate that this protocol will empower in particular environmental and host-associated microbiome research with a versatile tool to elucidate the metabolic contributions of microbial taxa within their complex communities. After a 1-d preparation of cells, sorting takes on the order of 4 h, depending on the number of cells required.


Assuntos
Citometria de Fluxo/métodos , Análise Espectral Raman/métodos , Separação Celular/métodos , Genoma/genética , Genômica/métodos , Hibridização in Situ Fluorescente/métodos , Marcação por Isótopo/métodos , Metagenômica/métodos , Microbiota/genética , Microfluídica/métodos , Pinças Ópticas , Optogenética/métodos , Análise de Célula Única/métodos
11.
Sci Adv ; 6(36)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32917592

RESUMO

Photosynthetic microorganisms are key players in aquatic ecosystems with strong potential for bioenergy production, yet their systematic selection at the single-cell level for improved productivity or stress resilience ("phenotyping") has remained largely inaccessible. To facilitate the phenotyping of microalgae and cyanobacteria, we developed "PhenoChip," a platform for the multiparametric photophysiological characterization and selection of unicellular phenotypes under user-controlled physicochemical conditions. We used PhenoChip to expose single cells of the coral symbiont Symbiodinium to thermal and chemical treatments and monitor single-cell photophysiology via chlorophyll fluorometry. This revealed strain-specific thermal sensitivity thresholds and distinct pH optima for photosynthetic performance, and permitted the identification of single cells with elevated resilience toward rising temperature. Optical expulsion technology was used to collect single cells from PhenoChip, and their propagation revealed indications of transgenerational preservation of photosynthetic phenotypes. PhenoChip represents a versatile platform for the phenotyping of photosynthetic unicells relevant to biotechnology, ecotoxicology, and assisted evolution.


Assuntos
Antozoários , Microalgas , Animais , Antozoários/fisiologia , Ecossistema , Fenômica , Fotossíntese , Simbiose
12.
Environ Microbiol ; 22(3): 952-963, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31390129

RESUMO

Chlorophyll (Chl) f and d are the most recently discovered chlorophylls, enabling cyanobacteria to harvest near-infrared radiation (NIR) at 700-780 nm for oxygenic photosynthesis. Little is known about the occurrence of these pigments in terrestrial habitats. Here, we provide first details on spectral photon irradiance within the photic zones of four terrestrial cave systems in concert with a detailed investigation of photopigmentation, light reflectance and microbial community composition. We frequently found Chl f and d along the photic zones of caves characterized by low light enriched in NIR and inhabited by cyanobacteria producing NIR-absorbing pigments. Surprisingly, deeper parts of caves still contained NIR, an effect likely attributable to the reflectance of specific wavelengths by the surface materials of cave walls. We argue that the stratification of microbial communities across the photic zones of cave entrances resembles the light-driven species distributions in forests and aquatic environments.


Assuntos
Cavernas/microbiologia , Cianobactérias/fisiologia , Ecossistema , Raios Infravermelhos , Clorofila/análogos & derivados , Clorofila/metabolismo , Cianobactérias/efeitos da radiação , Florestas , Fotossíntese/fisiologia
13.
Biochemistry ; 57(41): 5949-5956, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30230312

RESUMO

The M2 protein is an important target for drugs in the fight against the influenza virus. Because of the emergence of resistance against antivirals directed toward the M2 proton channel, the search for new drugs against resistant M2 variants is of high importance. Robust and sensitive assays for testing potential drug compounds on different M2 variants are valuable tools in this search for new inhibitors. In this work, we describe a fluorescence sensor-based assay, which we termed "pHlux", that measures proton conduction through M2 when synthesized from an expression vector in Escherichia coli. The assay was compared to a previously established bacterial potassium ion transport complementation assay, and the results were compared to simulations obtained from analysis of a computational model of M2 and its interaction with inhibitor molecules. The inhibition of M2 was measured for five different inhibitors, including Rimantadine, Amantadine, and spiro type compounds, and the drug resistance of the M2 mutant variants (swine flu, V27A, and S31N) was confirmed. We demonstrate that the pHlux assay is robust and highly sensitive and shows potential for high-throughput screening.


Assuntos
Vírus da Influenza A Subtipo H2N2/química , Vírus da Influenza A Subtipo H3N2/química , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/química , Prótons , Proteínas da Matriz Viral/antagonistas & inibidores , Proteínas da Matriz Viral/química , Substituição de Aminoácidos , Humanos , Vírus da Influenza A Subtipo H2N2/genética , Vírus da Influenza A Subtipo H2N2/metabolismo , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/metabolismo , Canais Iônicos/metabolismo , Transporte de Íons/efeitos dos fármacos , Mutação de Sentido Incorreto , Relação Estrutura-Atividade , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo
14.
ISME J ; 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-29087375

RESUMO

The tropical ascidian Lissoclinum patella hosts two enigmatic cyanobacteria: (1) the photoendosymbiont Prochloron spp., a producer of valuable bioactive compounds and (2) the chlorophyll-d containing Acaryochloris spp., residing in the near-infrared enriched underside of the animal. Despite numerous efforts, Prochloron remains uncultivable, restricting the investigation of its biochemical potential to cultivation-independent techniques. Likewise, in both cyanobacteria, universally important parameters on light-niche adaptation and in situ photosynthetic regulation are unknown. Here we used genome sequencing, transcriptomics and metabolomics to investigate the symbiotic linkage between host and photoendosymbiont and simultaneously probed the transcriptional response of Acaryochloris in situ. During high light, both cyanobacteria downregulate CO2 fixing pathways, likely a result of O2 photorespiration on the functioning of RuBisCO, and employ a variety of stress-quenching mechanisms, even under less stressful far-red light (Acaryochloris). Metabolomics reveals a distinct biochemical modulation between Prochloron and L. patella, including noon/midnight-dependent signatures of amino acids, nitrogenous waste products and primary photosynthates. Surprisingly, Prochloron constitutively expressed genes coding for patellamides, that is, cyclic peptides of great pharmaceutical value, with yet unknown ecological significance. Together these findings shed further light on far-red-driven photosynthesis in natural consortia, the interplay of Prochloron and its ascidian partner in a model chordate photosymbiosis and the uncultivability of Prochloron.The ISME Journal advance online publication, 31 October 2017; doi:10.1038/ismej.2017.192.

15.
Biochim Biophys Acta ; 1850(11): 2340-52, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26231923

RESUMO

BACKGROUND: Zebrafish express five cytochrome P450 1 genes: CYP1A, CYP1B1, CYP1C1, CYP1C2, inducible by aryl hydrocarbon receptor agonists, and CYP1D1, a constitutively expressed CYP1A-like gene. We examined substrate selectivity of CYP1s expressed in yeast. METHODS: CYP1s were expressed in W(R) yeast, engineered to over-express P450 reductase, via pYES/DEST52 and via pYeDP60. Microsomal fractions from transformed yeast were examined for activity with fluorogenic substrates, benzo[a]pyrene and testosterone. Modeling and docking approaches were used to further evaluate sites of oxidation on benzo[a]pyrene and testosterone. RESULTS: CYP1s expressed in yeast dealkylated ethoxy-, methoxy-, pentoxy- and benzoxy-resorufin (EROD, MROD, PROD, BROD). CYP1A and CYP1C2 had the highest rates of EROD activity, while PROD and BROD activities were low for all five CYP1s. The relative rates of resorufin dealkylation by CYP1C1, CYP1C2 and CYP1D1 expressed via pYeDP60 were highly similar to relative rates obtained with pYES/DEST52-expressed enzymes. CYP1C1 and CYP1C2 dealkylated substituted coumarins and ethoxy-fluorescein-ethylester, while CYP1D1 did not. The CYP1Cs and CYP1D1 co-expressed with epoxide hydrolase oxidized BaP with different rates and product profiles, and all three produced BaP-7,8,9,10-tetrol. The CYP1Cs but not CYP1D1 metabolized testosterone to 6ß-OH-testosterone. However, CYP1D1 formed an unidentified testosterone metabolite better than the CYP1Cs. Testosterone and BaP docked to CYP homology models with poses consistent with differing product profiles. CONCLUSIONS: Yeast-expressed zebrafish CYP1s will be useful in determining further functionality with endogenous and xenobiotic compounds. GENERAL SIGNIFICANCE: Determining the roles of zebrafish CYP1s in physiology and toxicology depends on knowing the substrate selectivity of these enzymes.


Assuntos
Sistema Enzimático do Citocromo P-450/fisiologia , Saccharomyces cerevisiae/genética , Peixe-Zebra/metabolismo , Animais , Benzo(a)pireno/metabolismo , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Especificidade por Substrato , Testosterona/metabolismo
16.
ISME J ; 9(9): 2108-11, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25668158

RESUMO

Chlorophyll (Chl) f is the most recently discovered chlorophyll and has only been found in cyanobacteria from wet environments. Although its structure and biophysical properties are resolved, the importance of Chl f as an accessory pigment in photosynthesis remains unresolved. We found Chl f in a cyanobacterium enriched from a cavernous environment and report the first example of Chl f-supported oxygenic photosynthesis in cyanobacteria from such habitats. Pigment extraction, hyperspectral microscopy and transmission electron microscopy demonstrated the presence of Chl a and f in unicellular cyanobacteria found in enrichment cultures. Amplicon sequencing indicated that all oxygenic phototrophs were related to KC1, a Chl f-containing cyanobacterium previously isolated from an aquatic environment. Microsensor measurements on aggregates demonstrated oxygenic photosynthesis at 742 nm and less efficient photosynthesis under 768- and 777-nm light probably because of diminished overlap with the absorption spectrum of Chl f and other far-red absorbing pigments. Our findings suggest the importance of Chl f-containing cyanobacteria in terrestrial habitats.


Assuntos
Clorofila/análogos & derivados , Cianobactérias/metabolismo , Fotossíntese , Clorofila/química , Clorofila/genética , Clorofila A , Classificação , Cianobactérias/genética , Ecossistema , Luz , Microscopia Eletrônica de Transmissão , Oxigênio/química , Pigmentação , Espectroscopia de Luz Próxima ao Infravermelho , Microbiologia da Água
17.
Appl Environ Microbiol ; 80(10): 3244-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24632258

RESUMO

Reports of the chlorophyll (Chl) d-containing cyanobacterium Acaryochloris have accumulated since its initial discovery in 1996. The majority of this evidence is based on amplification of the gene coding for the 16S rRNA, and due to the wide geographical distribution of these sequences, a global distribution of Acaryochloris species was suggested. Here, we present a rapid, reliable, and cost-effective TaqMan-based quantitative PCR (qPCR) assay that was developed for the specific detection of Acaryochloris species in complex environmental samples. The TaqMan probe showed detection limits of ~10 16S rRNA gene copy numbers based on standard curves consisting of plasmid inserts. DNA from five Acaryochloris strains, i.e., MBIC11017, CCMEE5410, HICR111A, CRS, and Awaji-1, exhibited amplification efficiencies of >94% when tested in the TaqMan assay. When used on complex natural communities, the TaqMan assay detected the presence of Acaryochloris species in four out of eight samples of crustose coralline algae (CCA), collected from temperate and tropical regions. In three out of these TaqMan-positive samples, the presence of Chl d was confirmed via high-performance liquid chromatography (HPLC), and corresponding cell estimates of Acaryochloris species amounted to 7.6 × 10(1) to 3.0 × 10(3) per mg of CCA. These numbers indicate a substantial contribution of Chl d-containing cyanobacteria to primary productivity in endolithic niches. The new TaqMan assay allows quick and easy screening of environmental samples for the presence of Acaryochloris species and is an important tool to further resolve the global distribution and significance of this unique oxyphototroph.


Assuntos
Clorofila/genética , Cianobactérias/genética , Reação em Cadeia da Polimerase/métodos , Sequência de Bases , Cianobactérias/classificação , Cianobactérias/isolamento & purificação , Primers do DNA/genética , DNA Bacteriano/genética , Dados de Sequência Molecular , RNA Ribossômico 16S/genética
18.
F1000Res ; 2: 44, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24555034

RESUMO

Cyanobacteria in the genus Acaryochloris have largely exchanged Chl a with Chl d, enabling them to harvest near-infrared-radiation (NIR) for oxygenic photosynthesis, a biochemical pathway prone to generate reactive oxygen species (ROS). In this study, ROS production under different light conditions was quantified in three Acaryochloris strains (MBIC11017, HICR111A and the novel strain CRS) using a real-time ethylene detector in conjunction with addition of 2-keto-4-thiomethylbutyric acid, a substrate that is converted to ethylene when reacting with certain types of ROS. In all strains, NIR was found to generate less ROS than visible light (VIS). More ROS was generated if strains MBIC11017 and HICR111A were adapted to NIR and then exposed to VIS, while strain CRS demonstrated the opposite behavior. This is the very first study of ROS generation and suggests that Acaryochloris can avoid a considerable amount of light-induced stress by using NIR instead of VIS for its photosynthesis, adding further evolutionary arguments to their widespread appearance.

19.
Front Microbiol ; 3: 402, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23226144

RESUMO

The discovery of the cyanobacterium Prochloron was the first finding of a bacterial oxyphototroph with chlorophyll (Chl) b, in addition to Chl a. It was first described as Prochloron didemni but a number of clades have since been described. Prochloron is a conspicuously large (7-25 µm) unicellular cyanobacterium living in a symbiotic relationship, primarily with (sub-) tropical didemnid ascidians; it has resisted numerous cultivation attempts and appears truly obligatory symbiotic. Recently, a Prochloron draft genome was published, revealing no lack of metabolic genes that could explain the apparent inability to reproduce and sustain photosynthesis in a free-living stage. Possibly, the unsuccessful cultivation is partly due to a lack of knowledge about the microenvironmental conditions and ecophysiology of Prochloron in its natural habitat. We used microsensors, variable chlorophyll fluorescence imaging and imaging of O(2) and pH to obtain a detailed insight to the microenvironmental ecology and photobiology of Prochloron in hospite in the didemnid ascidian Lissoclinum patella. The microenvironment within ascidians is characterized by steep gradients of light and chemical parameters that change rapidly with varying irradiances. The interior zone of the ascidians harboring Prochloron thus became anoxic and acidic within a few minutes of darkness, while the same zone exhibited O(2) super-saturation and strongly alkaline pH after a few minutes of illumination. Photosynthesis showed lack of photoinhibition even at high irradiances equivalent to full sunlight, and photosynthesis recovered rapidly after periods of anoxia. We discuss these new insights on the ecological niche of Prochloron and possible interactions with its host and other microbes in light of its recently published genome and a recent study of the overall microbial diversity and metagenome of L. patella.

20.
Appl Environ Microbiol ; 78(11): 3896-904, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22467501

RESUMO

The cyanobacterium Acaryochloris marina is the only known phototroph harboring chlorophyll (Chl) d. It is easy to cultivate it in a planktonic growth mode, and A. marina cultures have been subject to detailed biochemical and biophysical characterization. In natural situations, A. marina is mainly found associated with surfaces, but this growth mode has not been studied yet. Here, we show that the A. marina type strain MBIC11017 inoculated into alginate beads forms dense biofilm-like cell clusters, as in natural A. marina biofilms, characterized by strong O(2) concentration gradients that change with irradiance. Biofilm growth under both visible radiation (VIS, 400 to 700 nm) and near-infrared radiation (NIR, ∼700 to 730 nm) yielded maximal cell-specific growth rates of 0.38 per day and 0.64 per day, respectively. The population doubling times were 1.09 and 1.82 days for NIR and visible light, respectively. The photosynthesis versus irradiance curves showed saturation at a photon irradiance of E(k) (saturating irradiance) >250 µmol photons m(-2) s(-1) for blue light but no clear saturation at 365 µmol photons m(-2) s(-1) for NIR. The maximal gross photosynthesis rates in the aggregates were ∼1,272 µmol O(2) mg Chl d(-1) h(-1) (NIR) and ∼1,128 µmol O(2) mg Chl d(-1) h(-1) (VIS). The photosynthetic efficiency (α) values were higher in NIR-irradiated cells [(268 ± 0.29) × 10(-6) m(2) mg Chl d(-1) (mean ± standard deviation)] than under blue light [(231 ± 0.22) × 10(-6) m(2) mg Chl d(-1)]. A. marina is well adapted to a biofilm growth mode under both visible and NIR irradiance and under O(2) conditions ranging from anoxia to hyperoxia, explaining its presence in natural niches with similar environmental conditions.


Assuntos
Biofilmes/crescimento & desenvolvimento , Clorofila/metabolismo , Cianobactérias/fisiologia , Fotossíntese/efeitos da radiação , Células Imobilizadas , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Cianobactérias/efeitos da radiação , Raios Infravermelhos , Oxigênio/metabolismo , Oxigênio/farmacologia , Fotossíntese/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...